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ABSTRACT

Existing theoretical descriptions of the optical

properties of metals fail to explain measured characteristics

particularly at short wave lengths and at low temperatures.

This failure may be attributed to incorrect interpretation

of the physical mechanism responsible for optical and infrared

dispersion. A comprehensive theory based on a pertnrbation

treatment of bulk electron-phonon processes is presented here.

The central feature of the theory is the derivation of the

quantum correction factor which, when multiplied by the d.c.

damping coefficient, gives the frequency-dependent damping

coefficient. The theory is then combined with the already

existing theories of Umklapp and impurity scattering processes.

The theory successfully accounts for the optical properties of

metals in the entire free electron region at all temperatures
of practical interest.

Detailed calculations are presented for monovalant metals

and some polyvalant metals for which assumption of a symmetric

Fermi surface is valid. Polyval_nt and transition metals for
which interband transitions are important and the Fermi surface
is not spherical are also considered. In all more than a

dozen metals for which reliable experimental data are available

have been successfully treated.

Calculations of the absorption properties of super-
conducting metals are also presented in an attempt to determine

the extent to which bulk electron-phonon processes are

responsible for infrared absorption by super-conductors.
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Legend of Figures
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Following Page

Typical wavefunctions of metals showing the inner core and

the outer flat region. The distances representing the size of

unit cell are also indicated. The flatness of wavefunctions

enable us to use the free electron approximation.

Figure 2......... (86)

(a) The experimental curves of the specific heat Cp is compared

with that of the resistivity _o • It is shown that Cp and

(_o/T) have practically the same temperature-dependence.

(b) It is shown that the Gruneisen's formula for the temperature-

dependence of resistivity agrees excellently with the heat

capacity curve: Gruneisen (1928).

Figure 3-- _86 )

The quantum correction factor _p applicable at short wave-

lengths is plotted as function of temperature T and Debye

temperature _ .

Figure 4 (131)

The k-dependence of the free-electron part of the optical
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constants n and k is illustrated qualitatively.

Figure 5 .... (131)

The absorptivity A and reflectlvity R due to the free

electrons are illustrated qualitatively as to their dependence

on k.

Figure 6

The scattering cross-section _ per electron and the

virtual mass of a light quantum in the metal, Mp, are

illustrated qualitatively as to their dependence on k. A

comparison of these curves with those of Figure 5 shows that

M_ resemble A and R, respectively.

(131)

(17o)Figure 7

Theoretical and experimental curves of o- and (1- _ ) for

silver.

Figure 8 ........ (170)

Theoretical and experimental curves of n and k for gold.

According to the theory, k is a straight line and n is a parabola

in their dependence on k. There is no Umklapp contribution present.

Figure 9 (170)

The refractive index n of gold is plotted as a function k 2.

_qrthur _._.ittle,_rt_.
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Figure I0 (170)

The optical constants n and k of copper are plotted against

_ere exists practically no Umklapp contribution.

Figure ll

The refractive index n of copper vs. X 2.

(170)

Figure 12 ...........

Theoretical and experimental curves of cr and (l-S) for

copper are plotted against k.

(170)

Figure 13 ............................. (170)

Theoretical and experimental curves of O_ and (i-_ of
o

aluminum at 295 K.

Figure i_

Theoretical and experimental curves of

o

aluminum at Z8 K.

O_ and (l-E) for

(170)

Figure 15

Theoretical and experimental curves of n and k for

Q

aluminum at 295 K.

--(17o)

Figure 16 ..................... (170)

Theoretical and experimental curves of n for aluminum vs.
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O

k 2 at 295 K o

indicated.

The contribution by the Umklapp processes is

Figure 17 ..............

Theoretical and experimental curves of k for aluminum vs.

O

k at 78 K.

(17o)

Figure 18

Theoretical and experimental curves of n for aluminum

O

at 78 K is plotted against k 2. The Umklapp contribution is

indicated°

(17o)

Figure 19 ............ ,.....

Theoretical and experimental curves of _ and (l-E)

•u_ _=_,L =u room temperature.

--(17o)

Figure 21

Theoretical and experimental curves of

for zinc at room temperature.

O_ and (1-_)

Figure 22 ....

The theoretical and experimental curves of _ and (I-_)

for nickel at room temperature. The theoretical curves pro-

vided by the Classical Drude theory ( Beattie and Conn, 1955 )

are also shown by the broken lines.

(170)
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Figure 23 .................. (17o)

Theoretical and experimental curves of O"_ and (l-C) for

platinum at room temperature.

Figure 235--

Theoretical and experimental curves of

iridium at room temperature.

o--

..... (17o)

and (1-6) for

Figure 25 .......... (170)

Theoretical absorptivities of aluminum for different

temperatures are plotted against (_) in the short wave-

length region.

Figure 26 .........

Theoretical absorptivities of aluminum at short wave-

lengths are plotted as functions of temperature.

(17o)

Figure 27 ...............

Theoretical values of the refractive index n for

aluminum at different temperatures.

(170)

Figure 28 .....................

Theoretical and experimental curves of reflectivity for

the liquid metals, mercury and gallium, are compared. The

(170)
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theoretical curves do not include the Umklapp contributions.

Figure 29

Theoretical and experimental curves of reflectivity for

platinum at room temperature. The magnitude of the Umklapp

contribution is also shown.

(17o)

Figure 30

Theoretical and experimental curves of reflectivity for

titanium at room temperature. The Umklapp contribution is

also shown.

(17o)

Figure 31

Theoretical ( both with and without consideration of the

Umklapp processes ) and experimental curves of reflectivity

for iridium at room temperature.

(i70)

Figure 32 .......

The experimental curves of O-- and (I- _ ) for bismuth

obtained by Markov and Khaikin (1960). The curves exhibit

highly anomalous features. This is presented as an example

of the metal for which theory, both the present and the existing,

fails completely.

(170)
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Figure 33---

The density-of-states functions at the 3d- and 4s- states

of nickel and copper are illustrated schematically. The

qualitative difference between the two metals is quite clear.

(170)

Figure 34 ..... (170)

Theoretical bulk absorptivities of ........ transition

metals near the absolute zero of temperature are shown

qualitatively. The classical theory gives zero absorptivl

regardless of the wavelength. When impurity contribution is

present, the curves are to be displaced upward so that the

absorptivity retains a nonzero value at e=0.

Figure 35 (170)

A schematic illustration of the density-of-states function

for a super-conductlng metal as offered by the theory of

Bardeen, Cooper, and Schrieffer (1957).

Figure 36 (170)

The super-conductlng energy gap as a function of temperature.

O

The maximum value Eg(O).. is achieved at 0 Ko

Figure 37 ....... (170)

The ratio of the absorptivity of the super-conducting (As)

over non super-conducting (AN) aluminum is plotted according to
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the formula offered by Schrleffer (1960). The formula is

applicable in the spectral range I, _gL _ < E_

Figure 38

The absorption edge of lead and tin as observed by

Richards and Tinkham (1960). The theoretical curve of Mattis

and Bardeen (1958) is also shown.

(170)
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Table I

Following page

......... (39)

The measured values of d.c. conductivity are compared

with those computed from the optical data using the classical

Drude theory (Beattie and Conn, 1955).

Table II ............ (47)

Theoretical values of the bulk and total absorptivities at

low temperatures and in the near infrared are presented for

eleven different metals. These values have been calculated

from the mleroscopic parameters that are obtained from the

room temperature optical data. The theoretical values for

Cu and Ag are in excellent agreement wlth the observed values,

and agree with the theoretical values of Biondi (1956) which

were computed from the theory of Holstein (1954).
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The d.c. conductivities of liquid metals calculated from

the optical data are compared with the directly measured values

( Kent, 1919 ). It is clearly shown that the liquid metals are

good free electron systems.
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Some cases of metals with large anisotropy in resistivity
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are shown, since the anisotropy in resistivity and hence in

conductivity is closely related to the shape of the Fermi surface.

Numerical values of

values of _ _)
T

Table V (170)

Jj(_) are computed for various

Table VI ..... (170)

The temperature-dependence of the damping coefficient in gold

is computed theoretically and compared with the observed values.

The good agreement that is shown proves that theory predicts

correct temperature-dependence.
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Theoretical and measured values of d.c. conductivities
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Chapter I

Introduction

The interactions of metals with an external electromag-

netic field manifest themselves in different forms depending

on the different spectral ranges that are involved. Two

particular examples may be cited, the d.c. electrical proper-

ties which we observe by applying a static electric field,

i.e. the zero-frequency limit and the optical and infrared

dispersion characteristics which are observed by means of

proper optical apparatus where the frequency spectrum extends

from the far infrared to the ultraviolet.

The present work is concerned with the normal dispersion

characteristics in the optical and infrared range of the spec-

trum and the manner in which these properties are related to

the d.c. electrical properties and other lattice parameters

of metals. Inasmuch as we are concerned with normal dispersion

in contrast to anomalous dispersion, the frequency spectrum

that is involved in the present work must be sufficiently re-

moved from the anomalous region in which photoelectric reso-

nances of bound electrons become important. Most of the metals

that have been studied are found to have their lowest resonances

in the wavelength region, 0.3 _ 1.0 micron, and normal dispersion

is observed for wavelengths longer than these values.

_rthur _3!ittIe._.c.
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According to the free electron theory of metals, the free,

valence-electrons are responsible for the normal dispersion of

optical and infrared waves as well as for electrical conduction.

Ever since the discovery of electrons and Sommerfeld's suc-

cessful explanation of the phenomenon of thermionic emission

based on the free electron picture of metals and on the Thomas-

Dirac statistics, it has been a popular notion that both optic-

al dispersion properties and electrical properties may be ex-

plained on a common theoretical basis and that these two as-

pects of metallic properties are inter-related in a rather

simple manner. Granted that the simple free electron descrip-

tion of metals ks valid, such a notion finds justification in

that both the optical dispersion and d.c. electrical properties

are described by the equation of motion of the conduction elec-

trons subject to the general description in terms of Maxwell's

equations, the difference between the two aspects of metallic

properties arising solely from the different spectral ranges

that are involved.

Therefore, it may be expected that various frequency-

dependent optical quantities such as the optical conductivity

_(_ and the dielectric constant e(_ which describe the optical

dispersion properties, should also describe the d.c. electrical

properties such as the d.c. electrical conductivity _o and di-

electric constant e when we take the limit e _ 0 An various
o

dispersion equations. On the other hand, the temperature-

dependence of various optical quantities may be predicted from

the more widely studied electrical properties.
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Along with the development of quantum mechanics and quan-

tum statistics, much progress has been made on the theory of

electrical conduction in metals during the past fifty years,

and current theory is successful in explaining the observed

electrical conduction phenomena both qualitatively and quan-

titatively in most of the noble and alkali metals, and quali-

tatively in the transition metals. Modern physics is suc-

cessful in explaining qualitatively some of the salient

features found in alloys, eog. Matthiessen's rule, dependence

of resistivity on the relative concentrations of the constitu-

ent metal atoms in a random alloy, some unusual properties of

the transition metal alloys, etc. Compared with what has been

done on the electrical properties of metals, surprisingly

little progress has been made on the theory of optical and

infrared dispersion in metals. In fact, there is no satis-

factory theory available that can predict the dispersion

properties in the entire free electron part of the spectrum

of even the noble and alkaline metals. Existing theories

enjoy a limited success in various segments of the spectrum.

However, the less said the better with regard to the tran-

sition metals and alloys. This is surprising for theoretical-

ly, a description of optical and infrared dispersion proper-

ties is expected to be very much like that of electrical

properties, at least to the extent that both involve free

conduction electrons, and differ from each other only in the

,_Irthttr _.:<ittle,__htn
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extra frequency-dependence appearing in the optical quan-

tities.

Theoretical discussions on the behavior of metallic

conductors under the influence of electromagnetic waves

were first given by Hagen and Rubens on the basis of the

classical Maxwell theory of electrodynamics_ and later by

Drude on the basis of the free electron description of

metals and Maxwell°s theory. Drude°s theory applies to a

wider range of the spectrum than the Hagen-Rubens theory,

and the two theories are identical at the longer wavelengths

where the optical conductivity J(_) can be replaced by the

doC. conductivity 40)°

The limitations that are inherent in these theories

have been pointed out in a number of references upon com-

parison with experimental data. In general, the theories

fail in the higher frequency region of the spectrum (i.e.,

_ _ KT) and also at low temperatures. The Drude theory

has found a qualitative success in a variety of metals in

that it offers a good fit to the experimental dispersion

curves0 and yet fails quantitatively in that the d.c. con-

ductivity predicted by the best-fit theoretical curves is

always smaller than the measured values. The exceptions

are some liquid metals such as mercury and gallium° In

any case, the theory fails completely at low temperatures.

Despite these limitations, the classical free electron
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theory of Drude has remained the most successful of the

existing theories in the sense that it presents all as-

pects of dispersion properties in a rather self-contained

manner, especially when combined with the Kramers-Kronig

relation. Although there have been some attempts made to

improve the Drude theory so that it would be applicable to

a wider range of the spectrum and to extend it to multi-

valent and transition metals, they fail to remove the limit-

ations that are inherent in the original Drude theory since

these attempts were not made through a rigorous theoretical

formulation but rather by introducing additional unknown

parameters.

According to the classical theory, the optical absorp-

tivity (= emissivity) of a pure metal vanishes at very low

temperatures in contrast to experimental observations, and

(Restwiderstand) only if a substantial amount of impurities

ks present. Although the theory of anomalous skin effect

(Joe., anomalous in the sense that the distance traveled by

an electron between collisions is larger than the skin depth,

I=VFT > 5 ) proposed by Reuter and Sondheimer and later elabor-s

ated by Dingle has succeeded in explaining a part of the ob-

served absorption at low temperatures, the gap between the

theoretical and experimental values still remains to be ac-

I

counted for and amounts to anywhere between 20% _ 80% of the

measured values of the total absorptivity.

,qrthur _._ittle,_nr.
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Practically all of the existing quantum mechanical

theories of optical and infrared absorption in metals have

been developed since 1954, and were designed to remedy the

gap between the classical theoretical values and the observed

values of the absorptivity in the near infrared and at low

temperatures. However, none of these theories show attempts

to formulate different aspects of the optical and infrared

dispersion properties in such a self-contained form as is

possible in the classical Drude theory. They are confined

to derivations of absorptivity as a function of temperature

and wavelength in a particular segment of the infrared

spectrum. The most outstanding of these theories are those

of Holstein8 and those developed more recently by Gurzhi and

Silin of Russia. It was Holstein who originally suggested

that, unlike what is predicted by the theory of anomalous

skin effects, a bulk absorption process in which an elec-

tron absorbs a photon near the surface and then diffuses

into the bulk interior of the lattice emitting a phonon to

conserve energy and momentum, may play a significant role

at low temperatures. Holstein calculated absorptivity in the

near infrared region (_ i_), and the results were already

sufficient to prove that, at low temperatures too, the bulk

electron-phonon collisions are not less important than the

skin effects of Reuter, Sondheimer and Dingle. More recently,

Gurzhi made an attempt to formulate the total absorptivity
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including both the skin effects and the Holstein's bulk mech-

anism to be applicable to a wider range of spectrum than what

is defined by _ >> K_ >> KT. Gurzhi's result was, at least, in

its form more general than that of Holstein's formulae, and will

be shown to agree identically with the absorptivity derived in

the present work in the limit, _>> K_,KT. Following the

semi-classical calculations by Silin of the contribution by

the electron-electron collisions to the absorptivity based on

the Fermi-liquid theory of Landau, Gurzhi improved Silin's

method by use of a more rigorous Fermi-liquid theory. He

pointed out that the electron-electron collisions may be

significant at high frequency and at low temperature, and

subsequently incorporated these into his previously obtained

formula for the total optical absorptivity. The theoretical

method used by Gurzhi is essentially that of obtaining pertur-

bation solutions to the kinetic equation for the electron dis-

tribution functions taking into account various collision terms.

This is very much like what was done by Wilson in his calcul-

ations of various d.c. electrical properties. Holstein used

a straightforward quantum mechanical perturbation theory and

calculated various transition matrix elements using a semi-

classical form of electromagnetic perturbation. There are, of

course, other sophisticated theoretical techniques available

for calculating the optical properties of metals such as the

method of temperature-dependent Green's functions developed
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by Martin and Schwinger and independently by Kogan, and

also the S-matrix formulation which was used by Gurevich

and Uritskii in their theory of infrared absorption in

crystals, mainly for semi-conductors, in the presence of

external magnetic field and in the photoelectric region.

However, the remarkable success found in the results ob-

tained by Holstein and Gurzhi in the high frequency region,

and also in the results obtained in the present work for a

wider range of spectrum attest to the fact that a straight-

forward quantum mechanical perturbation theory is satisfac-

tory for both qualitative and quantitative calculations of

the optical properties, at least in the free-electron region

of the spectrum. On the other hand, a quantitative calcul-

ation of optical properties in the resonance region (i.e.,

for i _ i_ for many metals) can be offered when the general

results obtained on photoelectric absorption in crystals

such as that by Gurevich and Uritskii, are extended to in-

clude the resonance absorption in metals.

The main body of the present work consists of calcul-

ations of various optical and infrared dispersion and elec-

trical properties as well as other related lattice para-

meters based on Holstein's bulk mechanism. In this sense,

the theory by Gurzhi is the closest to the present work inas-

much as it is also based on the same mechanism for electron-

phonon processes. Although Gurzhi's formula for absorptivity
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agrees with the present theory identically in the near infra-

red where _>>K_ K T_ there are some important differences

between the two, and the shortcomings of Gurzhi's theory will

be explained.

A theory may be judged on the basis of the following

obvious set of criteria:

a) It has to provide a good fit in frequency-dependence

to the optically observed curves for various optical quantities;

b) The theory when best fitted to the optical curves

should reproduce various d.c. electrical and lattice para-

meters in satisfactory agreement with the measured values;

c) In order to satisfy the correspondence requirement

in the classical region, the theory should produce success-

fully the well known and time-tested classical formulae for

various dispersion properties in the classical case of small

_ or high temperature; and

d) As another requirement of the correspondence it should

be able to reproduce the well known temperature-dependence of

various d.c. electrical and some thermodynamic properties in

the limit of zero frequency or infinite wavelength.

None of the existing quantum mechanical theories succeed

in satisfactorily meeting all four of these criteria. Some

.q_:tI_u_:_ 31.ittle,_.L-.
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salient features of the present theory shall be summarized

itematically, and it is expected that this will also serve

as comparison between the present theory and the existing

theory.

In the present theory the quantum mechanical correc-

tions to the classical dispersion formulae are mostly re-

vealed in the frequency- and temperature-dependence in the

over-all damping coefficient P(_,T). P(_,T) differs signi-

ficantly from the corresponding d.c. value Po(T), which is

the one used in the classical Drude and Hagen-Rubens theories,

only in the spectral and temperature ranges where the quan-

tum effects are important. This is conveniently represented

by introducing the relation

r(e,T) = b(e,T) Fo(T ) I-(1)

where the b-factor is particularly important in the quantum

mechanical region of high frequency and low temperature.

Aside from the appearance of the b-factor, the present theory

offers various optical and infrared dispersion formulae which

bear very close resemblance to the well known classical

formula_ . Thus, it is clear that establishing the frequency-

and temperature dependences of P or b will occupy the heart

of the present theory. Results for non-transition metals ap-

ply mostly to those metals which have _ _S-dependence on

temperature of the electron-phonon part of the resistivity at
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low temperature. The transition metals are shown to exhibit,

in temperature- and frequency dependences, properties distinct

from those of non-transition metals. The ferromagnetic and

paramagnetic transition metals are investigated independently.

It is found that the electron-phonon pa_t of the dispersion

formulae for transition metals for which the number of s-

electrons is completely compensated by the number of empty

states (positive holes) in the d-band, leads to _T_-depend -

ence of d.co resistiv_ty_ while the formulae for those tran-

sition metals in which the total number of _-electr_ns are

not sufficient to close the d-band, lead to a negative ex-

ponential temperature-dependence at very low temperatures.

There are further differences in temperature-dependences

between ferromagnetic and paramagnetic transition metals

which are offered by the theories of Weiss and, at low

temperatures, of Heisenberg.

Generally, the over-all damping coefficient F(_T) is

a sum of the contributions by the electron-phonon collisions,

electron-electron collisions, and the impurity scattering

such that

P(_O,T) = Pep(e_T) + Pee(O,T) + PM(T) I-(2)

where the subscripts (ep)_ (ee) and (M) represent the three

processes in the order mentioned above, and where the quantum

correction factors, b (_0T) and b (_0T), may be defined for
ep ee

the first two processes in such a way that

_rthttr _l.:_Little,_tt n
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rep = roep(T)bep((_,T)

F
ee Foe e (T)be e (a>, T)

(FF--_o 2°ee T) + F--_'-)bep(_,T) + _ bee(ab

I-(3)

Among the three processes only the electron-phonon process is

important at ordinary temperatures and in the free-electron

region of the spectrum provided that the metal sample is a

reasonably pure one. Many studies have been made on the co, tri-

butiQns of the electron-electron collisions and the impurity

scattering to optical and infrared absorption in metals.

Among the latest developments, the most prominent are the

works of Pitaevskii, Silin and Gurzhi. According to these

authors, the electron-electron collisions may contribute sig-

nificantly either at very low temperatures or in the high

frequency limit of the infrared spectrum, while the impurity

scatterings are important at very low temperatures even for

a reasonably clean sample. In particular, Gurzhi has derived

a frequency-dependent electron-electron damping coefficient

F (_,T) as well as a general formula for the impurity con-
ee

tribution to the damping.

In the present work, a variety of metals, all of which

are supposed to be of very small impurity content, have been

investigated as to the relative importance of the three mech-

anisms of damping in the high frequency region and also at low
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temperatures° As the result of this investigation it is

found that although the suggestion of Pitaevskii, Silin

and Gurzhi may apply to some special cases of transition

metals_ it does not strictly apply to other metals in most

of the quantum mechanical region of the free electron spec-

trum. In facts the electron-phonon process or the Holstein

mechanism alone, in the form that is derived in the present

theory_ explains quite successfully (viz., up to 2 _ 5%) the

low temperature (4o2_K) near infrared (I_1.5_) absorptivity

of all the metals for which experimental data are available.

The calculations on transition metals in the present

theory suggest that the electron-electron collisions and im-

purity scatterings are particularly important for those tran-

sition metals0 and similarly for other multivalent non-

transition metals t in which the interband transitions

require a non-zero momentum transfer. For a transition

metal of this kind, only the phonons of energy larger than

a certain non-zero value are effective in the transitions,

and as the result of this the electron-phonon part of the

low temperature resistivity has the previously mentioned

negative exponential nature° This applies to all the tran-

sition metals whose _-electrons are not sufficient to close

the d-band, and the low temperature resistivity is due mostly

to the electron-electron collisions with the well known T e-

dependence on temperature as well as to the temperature-

_IrtMtr _._ittIe,_ttr.
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independent impurity scatterings (Restwiderstand). On the

other hand, for those transition metals whose S-electrons

are exactly compensated by the positive holes in the d-band

such as the triad, Pt, Ni and Pd, the TZ-dependence of the

electron-phonon part plus the Te-dependence of the electron-

electron collision term define the temperature-dependence of

the low temperature resistivity to the extent of neglecting

an additional T-dependence in the electron-phonon part.

This is partly in contrast to the earlier concept that the

electron-electron collisions make predominant contributions

at low temperatures for all transition metals.

Strictly speaking, the T2-dependence is predominant in

the transition metals other than the triad at temperatures

smaller than the value given by

_U L Ikd - ksl <

_E _ K : _ 10aK

which is also the lower limit in the summation over the

, are the Fermi momenta for the
phonon states where k d, k s

d- and s-bands, U L is the longitudinal phase speed of sound

and K is the Boltzman constant.

All the optical dispersion quantities including the op-

tical conductivity _(_,T), the optical dielectric constant

_(e,T), and absorptivity A(_,T) that are calculated in the

present theory show not only good fit to the corresponding

I-(4)



-15-

experimental curves throughout the entire free-electron

infrared spectrum, but also reproduce various d.c. elec-

trical properties in excellent agreement with the directly

measured values for a number of non-transition and tran-

sition metals. They also reproduce exactly the well known

temperature-dependences of the d.c. electrical properties

(hence, also of heat capacity and thermal conductivity)

such as the famous Gr_neisen formula G<_ for
non-transition

metals. The Gr_neisen formula has long been known to des-

cribe temperature-dependence in excellent agreement with

observations for T not toomuch larger than 8.

It is pointed outs as the result of the present theory,

that the quantum corrections represented by b(_,T)-factor

can also be significant in a relatively long wavelength

region of the infraredg when _ _ KT_ This is clearly illus-

trated in the formula for the reflectivity,

R(_gT) _ 1 - 2J_ _ ]%
e_d.c.(T) [b(e0T)

I-(5)

which applies to the Hagen-Rubens limit of the spectrum or

when _e << r2s where the b-factors although close to unity in

this spectral ranges is usually different from unity by a

small fraction_ and becomes essentially equal to unity when

_<< KT in which case the formula is identically the well

known and time-tested Hagen-Rubens formula. In this sense,

_[rthur _$.:_].tttle,_.r.
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Formula (5) may be called the generalized Hagen-Rubens

formula.

The present theory also enables us to estimate such

lattice parameters as the electron density, the effective

mass values of optical electrons, the Fermi energy, the

upper edge of the d-band in a transition metal, and longi-

tudinal phase speed of sound, etc. The heat capacity and

thermal conduction properties also follow as by-products

of the present theory. The impurity content can be esti-

mated from low temperature optical data even for a sample

with such a small impurity content as to be undetectable

at ordinary temperatures.

The calculations for absorptivity at very low tempera-

tures include both normal and superconducting metals. For

the superconducting metals or below the superconducting

transition temperature, the calculations are assisted by

the theory of superconductivity of Bardeen_ Cooper and

Schrieffer. That Holstein°s bulk absorption process might

be important in a superconductor was suggested recently by

Richards and Tinkham. The calculations in the present work

are intended as a check on the said suggestion and to see

whether the existing gap between the experimental absorptiv-

ity and the predictions of Mattis and Bardeen can be ex-

plained by Holstein's mechanism° It may be noted that the

absorptivity for light quanta0 _0 smaller than the energy
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o

gap (at T 0 K) has been given by Schrieffer and has been

shown to agree well with experiments. At the present no

definite conclusion can be provided on the basis of the

present calculations because of insufficient experimental

data.

Finally, some words need to be said regarding possible

limitations in the present theory. The limitations may

result mainly from two causes: firstly, the use of the simple

Debye model and secondly, the assumption of spherical Fermi

surfaces.

The first assumption leads to difficulties at very

high temperatures (T_ _ ) where the Umklapp process is

important. The same difficulty is found in Gruneisen's

formula for d.c. resistivity at very high temperatures,

Another less serious aspect of limitations in the

use of the Debye model is in neglecting the anisotropy

among the longitudinal and two transverse directions, whereas

in more accurate calculations, one needs to consider three

components of the phase velocity of sound as well as three

characteristic temperatures instead of the Debye temperature

alone. This problem of lattice anisotropy is of no concern

for a polycrystalline metal sample. Perhaps the best
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justification for using the simple Debye model is in the

good agreement found between the theoretical and experi-

mental values of h_ __+,,

It is well known that the Umklapp processes are impor-

tant at very low temperatures, especially for those metals

An which the interband transitions are important. At very

low temperatures, the Umklapp processes enter into various

physical quantities through electron-electron collis_on

terms and do not enter into the electron-phonon processes,

since the angular deflection involved in an electron-phonon

scattering is in the order of _whlch is certainly much

less than unity. It is known that contribution by electron-

electron collisions to the over-all damping coefficient

vanishes when Umklapp processes are not present. In short,

at very low temperatures, the Umklapp processes are impor-

tant to the extent that the electron-electron collisions are

important, and hence are automatically taken into consider-
i

atlon An the present theory by incorporating the effects of

electron-electron collislons into various dispersion

formulae.

The limitations that are associated with the assumption

of a spherical Fermi surface are well known, and are often

discussed in the llterature. In general, this approximation

works well for most monovalent metals such as the noble metals

Ag, Au, and Cu, and also for some multlvalent metals for which
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the interband transitions are not important. On the other

hand0 the assumption of a spherical Fermi surface is not

strictly valid for those non-transition metals in which the

Fermi surface touches _ or almost touches the plane of energy

discontinuity and for all transition metals in which the

interband transitions between the s-and d-bands are most

importanto In the present theory0 the calculations for

non-transition metals are carried out on the basis of a

spherical Fermi surface0 while non-spherical Fermi surfaces

have been used for all transition metals° Therefore_ it is

expected that the results on non-transition metals will not

apply strictly to some multivalent metals°

The present work does not include detailed study of

the optical and electrical properties of alloys, and also

of such other properties of metals as thermoelectricity and

magneto-resistive effects° Much has yet to be learned

theoretically about the d.co electrical properties before

it is possible to study rigorously the optical and infrared

dispersion properties of alloys.

An attempt has been made to make this thesis self-

contained_ but in view of all the relevant work yet to be

done in the field of interest this was impossible. Similar-

lye an honest effort to give all due credit was made, but it

is likely that some work has not been properly cited, such

omissions were not intentional°

2lrthur/_l._ittle,_nr.
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Chapter I I

Fundamental Relations Between Optical And

Electrical Properties Of Metals

II-A Maxwell's Equations and Kramers-Kroniq Relation

Maxwell's theory of electromagnetism provides us with

a set of the most fundamental relations between the optical

properties and the electrical properties of metals. These

relations plus the well known Kramers-Kronig relations

between the real and imaginary parts of the complex polar-

izability constitute a foundation upon which the inter-

pretation of the optical and infrared behavior of metals in

terms of electrical properties is based.

If E and H are the electric and magnetic fields repre-

sented as functions of the coordinate [ and time t for a

given angular frequency

= [a_v sec."1]

Maxwell's equations for an uncharged conductor are given

in c.g.s, units by

_7 x H - e 8E _(co) E
-- C --_-- + C --

?x E E _H

_7 • E = ? . H = 0

II-(1)

II-(2)

ix-(3)
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where e(_) is the real dielectric constant, _(e) is the con-

ductivity_ and _ is the permeability.

At optical and infrared frequencies, _ = 1 for all sub-

stances. The magnetic field H is eliminated by combining

Equations (i) and (2) and we obtain

_a E BE

_E_ =_ _t2 +4_= _t ii-(4)

The solution to this differential equation is given by the

typical solution to the usual wave equation,

-%
i_t + i(e_ e- ±4Xo_) z/c

E= E oe

where E_o is the maximum amplitude (i.e., at z= 0, t=0) and

z measures the penetration distance into the metal. The

solution (5) takes on the conventional form expressed in

terms of the complex index of refraction N,

(t + g z )E= E O ei_

if we identify N with [...]_-i of Equation (5):

= (n-ik)= [E- i 4x___q__]%

where n and k represent the index of refraction and absorp-

tion coefficient0 respectively.

The relation (7) immediately yields the following two

important relations between the electric properties

II-(5)

zi-(6)

II-(7)

_¢th_,r/II31ittI¢,_.c.
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[j(m), e(_)] and optical constants (n,k) :

e =ne-k a II-(8)

ii-(9)

These two relations will be referred to frequently.

The physical significance of _(e) for _> 0 becomes

evident when we calculate the rate of energy loss by com-

puting the Poynting vector S,

S = c- 4_ (E x H) II-(lO)

and taking the time average of

_S
Z

-W = _Z

where W is the Joule heat produced per unit time and per

unit volume within the conducting medium. Then, we ob-

tain as the definition of _(_)

= w-/
2

II-(ll)

which says that _ is the fraction of the energy absorbed

or dissipated per unit time and unit volume out of the

energy density per unit volume Ea of the electromagnetic
Z

field of frequency _. It is quite obvious then that _(0),

at _= 0, should be the d.c. conductivity of the metal. It
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is a popular practice to introduce a complex dielectric

constant e and complex polarizability_ such that

= 1 +4_ = _e II-(12)

II-(13)

This is analogous to the similar relation for the real

quantities,

e = i + 47_ = n a- kS: _ = 1 II-(14)

Then_ upon comparing Equations (12) and (13) with

Equation (7)0 we now have

e = 1 + 47_ = ne- k a II-(i5)

47_' = 4_ff = 2nk II-(16)

These two relations enable us to obtain (n,k) values upon

knowing the values of the dielectric constante and conduc-

tivity _ at a given frequency, and, conversely, to obtain e

and _values from known values of n and k. In general, the

observations in the optical and infrared part of the spec-

trum are designed to measure the optical constants (n,k) or

other optical properties such as the reflectivity and

emissivity (= absorptivity for metals). Therefore, for

the purpose of predicting (n,k) values for a given frequency

_lrthttr _]._Little,_.r.



and temperature T (°K) from a known set of values of the

d.Co electric properties e(0) and _(0), or for the purpose

of predicting the d.c. electric properties from measured

values of (n,k), we need to have a set of theoretical

equations relating e(e) and _(_) to the corresponding d.c.

quantities e(0) and _(0). Specifically, the frequency and

temperature dependence of _(_) and e(_) needs to be specified.

Establishing the correct _- and T-dependence of_ and

constitutes a major part of the theoretical work explain-

ing the optical, infrared, and the related electrical proper-

ties of metals. Fortunately, the solution to the theoretical

problem is considerably simplified with the aid of the

Kramers-Kronig relation which represents an integral relation

between _(_) and e(_), or, more properly, between the real

and imaginary parts of the complex polarizability as follows:

oo

Tr J CO '2- _02

0

With the help of Equation (16), this represents a

relationship between e(_) and _(_) given by

oo

P [ )
 'rr "rrU

o

Therefore, it is sufficient to specify the _- and T-

dependence of either _or e for establishing the complete

_- and T-dependent structure of the optical and electrical

II-(17)

II-(18)
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quantities that are involved in Equations (15) and (16).

In a more general discussion of the Kramers-Kronig

relations Equations (17) and (18) are equivalently repre-

sented in the form

_e[_(_)- z] - P _ _, :
--00

II-(19)

which may be recognized as the real part of the equation

+00

i 7 [_(_o') -i][[(m) - i] -=i-_ P _o' m, _
--00

zz-(2o)

or in the limit of N _ 0+

[_(_)- i] -

-_oo

7i a_' [_(_o') -i]
2?ri _o -(o_ + iN)

-- O0

zz-(2l)

Equation (20)a which is the most general representa-

tion of the Kramers-Kronig relation, was observed by

Kramers as a simple consequence of Cauchy's theorem if we

assume that N(_) is a function of a complex variable

analytic in the upper half _-plane which approaches unity

at infinity. It was later shown b[ Kronig that the ab-

sence of poles of N(,m) in the upper half _-plane was both

a necessary and sufficient condition for the property that

no signal may propagate through a medium with index of re-

fraction N{_) with a speed greater than that of light.

_rtllttr _._Little,_m'.
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Sometimes, the optical properties of a medium are ex-

pressed in terms of the forward scattering amplitude F(m)

and the total scatterinq cross-sec_i_n p_ _=__ center

(e) rather than in terms of (_,_) or (n,k)s

The equation which shows the relation between the com-

plex forward scattering amplitude F(e) and the complex in-

dex of refraction N(_) was first offered by Lorentz,

namely,

aVce F(_0) II-(22)
[N(_) - i] = n o o°a

where n o is the number of scattering centers per unit volume.

The same derivation leading to Equation (22) also yields the

optical theorem

s II-(23)

where _ (_) is the total cross-section in cm e per scatterer
s

The above relation also follows very simply upon noting

that the intensity of a wave propagating through a medium

of refractive index N(_) is reduced in a distancezby a

factor Jexp[i _ IaN(e)z] and also by e n°_s(_)z according

to the definition of _ (e) Comparison of these two ex-s

pressions gives Equation (23).

Upon comparing Equations (22) and (23) with the

relations (12)_ (16), some useful relations follow.
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We have, for instance,

n(m) = ReN(_) = 1 +

k(e) = - ImN(_) =

_2

032

ReV(_)

Im F(_)

II-(24)

n c
_ o

2_

(e) = Re-_a = (i+ 4_)

_(_) II-(25)

(1 2_n°c2= + 6o--_ (==n°°= =]Re t/-\ (De
II-(26)

(D

4_

n c2 (Ira )) (i 2_n c2 ))o ._(_ + o
(b . a_2 Re ._(0_

II-(27)

where the real and imaginary parts of F(_) are related to

each other through Kramers-Kronig relation

ReF (_) _ P de' ImF (_')_,_(_,-_)
-- 00

OO

2(_2 / e, ImP( e' )P d _, (_, e_ _2)

0

II-(28)

_rthur _3!ittle,_rtr.
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In applying the relations (24) _ (27) to the infrared

dispersion in metals, we need only to remember that n is
o

the effective number of conduction electrons per cm z and

that _ (_) is the total scattering cross-section for the
s

conduction electron - external photon interactions includ-

ing the absorption, emission, and the scattering in the

ordinary sense.

II-B Absorptivity (Emissivity) and Reflectivit_

Various optical, infrared and electrical properties

may be obtained from measurements of the absorptivity (A)

and reflectivity (R), as well as from n and k. The two

quantities are related by the equation,

R = 1 -A II-(29)

The relationship between (R,A) and the electrical

properties will follow naturally from Equations (15) and

(16), when we establish the relationship between (R,A)

and (n,k).

The optical theory gives the well known result that

for normal incidence

R I i2N - 1 = 1 -A if-(30)

which defines the reflectivity and absorptivity in terms
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I

of the complex index of refraction N = n-ik. In particular,

for a transparent medium such as glass, we have N = n, and

Equation (30) gives the well known formula

( n-i .)_R = n+l

Equation (30) completely determines R and A in terms of n

and k. In order to express R and A in terms of _anl _ ,

it is convenient to follow the simple algebraic method of

Price (1949) rather than to use Equations (15) and (16).

Upon writing, for the complex polarizability,

[4_] -1 = (x + iy) II-(31)

The absorptivity is given by

A 2 A 2

8R - 8(l-A)
= T +(T°+ y o)% ii-(32)

where

= x + x e + ya

= l+k e_ na = x/x e + ya

4x_
- 2nk = -y/x e + y2 II-(33)

and these are just as well represented in terms of the

real and imaginary parts of scattering amplitudes accord-

ing to the relations (24)_ (27).

_thur _.:_!ittle,_tr.
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The frequency- and temperature-dependence of R and A

will then be determined when the m- and T-dependent struc-

ture of _ or 6 is obtained theoretically. The spectral and

temperature variation of R and A will vary depending on the

choice of the particular theoretical model used in calculat-

ing the complex polarizability. In particular, if we adopt

the classical free electron theory of Drude (1904, 1902)_

the real and imaginary parts of the complex polarizability

are given by

x = - (_ot )2
0

y =- (_tR)2
II-(34)

where

= J m-K-

o 4_no e2

-i

tR = Po

m*

e

n
o

= the relaxation time of

a conduction electron

= the effective mass of

a conduction electron

= the electronic charge

(: 4 8x 10- %° .S .U. )

the effective number

of conduction electrons

per unit volume

Price (1949) presents an extensive investigation on

the qualitative features of the spectral and temperature
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variations of A and R for metals to which one electron dis-

persion theory can be applied in the form of Equation (24).

In general, the expressions for x and y will assume

different forms for different theoretical models. A brief

review on some of the most popular theories on optical and

infrared dispersion is presented in the chapter that follows.

_rthttr _3£ittIe,_.r.
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Chapter III

Existing Theories on Optical and Infrared Dispersion

in Metals

III-A Haqen-Rubens Theory

Theoretical discussions on the behavior of metallic

conductors under the influence of electromagnetic waves

were first given by Hagen and Rubens (1903) and by Drude

(1904) on the basis of classical electrodynamics.

The Hagen-Rubens theory is restricted in its ap-

plicability to the long wavelength part of the spectrum

where (err)2 is much smaller than unity, tR being the re-

laxation time characteristic of the damping in the elec-

tronic motion. The results of the Hagen-Rubens theory

follow from Equation II-(8), (9)0 and (20) upon taking

o'(o) : %. o.

We thusin the long wavelength part of the spectrum.

have

nk_ <_d.Co/V)

It may be shown that (_d.c./V)is much larger

than unity for the wavelengths for which the approxi-

mation (1) ks valid, and hence, approximately

III-(1)

III-(2)

L
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5_d.n_k_ c.
v

III-(3)

R = I-A=1-2 J V

_d.c.
III-(4)

where the latter expression is obtained upon substitut-

ing (3) into II-(20). The formula (4), which is known

as the Hagen-Rubens relation, has been compared with the

experiment for infrared radiation and for various metals

and temperatures (Hagen and Rubens, 1903), and it is in

general in fair agreement with the experiment for

The approximation represented by (i) is equivalent

_ taking _ ...... _+ T _n p_ w_th the aDDlied elec-

tric field E. This will be true only if the relaxation

time fR of the electron is small compared with the period

of the light wave so that the field acting on the electron

is approximately constant during the time taken by an

electron to traverse its mean free path. For wavelengths

shorter than _i0 _, the current will be out of phase with

the field, and it is generally observed that the formula

(3), (4), and (2) are not even approximately in agreement

with the experiment.

_rthur _._Little,_rtr.
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III-B Drude Theory

A more general theory than that of Hagen and Rubens

was given by Drude (1904) by obtaining the solutions to

the classical equation of motion for free conduction

electrons subject to Maxwell's electromagnetic field.

In contrast to the Lorentz theory (Lorentz 1906) of

absorption by dielectrics, which rests on the assumption

that bound charges become polarized upon interaction with

the electromagnetic wave, Drude (1902, 1904) suggested

that the optical properties of metals could be explained

by consideration of the interaction between the free con-

duction electrons in the metal and electromagnetic wave.

The solution for the conductivity 0_) is obtained upon

solving the equation

m* _ + m* F os = -eE_Dei_t

where s is the electron position coordinate within the

metal0 E = E_ imt is the applied electromagnetic field,

and F° is the damping coefficient which is also equal

to the inverse of the d.c. relaxation time %R" Using

the effective mass m* in Equation (5) instead of the

normal election mass m which was used in the original

Drude theory (1904), we have incorporated the later de-

veloped effective mass method with the primitive free

electron theory of Drude.

III-(5)
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Equation (5) yields the expressions for the conduc-

tivity _(m) and the dielectric constant e(e),

_(e) _ nk_ _(0)
2_ = I+ (_tR)2

IZZ-(6)

[l-e(_)] = 1 + k a- n e =
i + (_OtR)2

III-(7)

where we used the notations,

-i
tR =P

e2/ne
c(0) - m* o

ZII-(8)

We see that

_ 0 u ku] III-(9)

so that _(0) is the d.c. conductivity.

It can be shown readily that the relations (6) and

(7) reduce to the simple relations (2), (3) and (4) of

the Hagen-Rubens theory in the limit

(_tR) 2 << i

On the other hand, the results of the Drude theory

do not apply to that part of the short wavelength region

where the contribution of the bound electrons enter (i.e.,
b

_rtI_ur _l._!ittle,_,c.



-36-

the resonance region) through the photo-electric effects.

At the shorter wavelengths, the anomalous dispersion occurs

due to the contributions of the photo-electric absorption,

and also the core polarization becomes important. In this

part of the spectrum, the simple free electron theory of

Drude is not enough to explain the observed dispersion, and

will be modified, for the dielectric constant, as follows:

4_ n ee

(e-l)= ne-ka'l=- m*e_a + (e-l)c+ (e-l)p III-(10)

where (e- i) c is the contribution of the core polarization

and (e -i) of the photoelectric absorption.
P

In general, the anomalous dispersion is observed at

a wavelength well below _i_. Ag, Au, and Cu, for instance,

have their lowest resonances at 0.27 _ , 0.37 _, and 0.50

(Meier, 1910), respectively. As long as one stays at wave-

lengths which are long enough to be sufficiently outside

the resonance tail, the free electron theory of Drude should

be satisfactory. At the high frequencyregion where the

condition

(_t R)e >> 1

is satisfied, the free electron part of _(e) and ¢(e) are

given by
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/(o-(_) _ o-(0 c_t R

e-i _ - 4_neee/m*_a/

The values of (e-l) are available for a variety
C

of metals (Van Vieck, 1959), and are generally inde-

pendent of frequency (Mott and Jones, 1936). The value

of (e-l) may be found either by a direct theoretical
P

calculation, or empirically from the observed data of

(n,k) values. The photoelectric part (nk) of the ob-
P

served (n,k) values is obtained empirically upon sub-

tracting the free electron part (i.e., the Drude part)

from the observed (n,k) values making use of the

relation (ii). Then, (z-l) is obtained, in turn, upon
P

making use of the Kramers-Kronig relation II-(18),

III-(ll)

(e-l) = 4-!-J (nk)pp

_' d _'

(._2_ 6D2
III-(12)

For wavelengths sufficiently outside the photo-

electric region, (¢-I) c and (¢-l)p are small enough to

be neglected compared with the free electron part. We

shall be primarily interested in this part of the spec-

trum where only the free conduction electrons play a

dominant role.

_rt|lur _l._!ittIe,_m-.
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Equations (6) and (7) show that the two Drude

equations are related with each other by a rather simple

_/1 - _ = (_tR)-_ : ro/_ : _kv/1 + k_ - _ III-(13)

This relation enables us to obtain the value of the d.c.

damping coefficient F ° or the d.c. relaxation time tR

when we have only one pair of (n,k) values at an arbi-

trary frequency, provided that the frequencye is not

too large.

A more exact way of determining the value of Po

would be to plot _(_) against (l-e) from a set of (n,k)

values, and then determine the slope (Fo/4X) o_ the re-

sulting straight line. This method was first pointed

out by Wolfe (1954, 1955). Any deviation of the curve

from the Drude straight line would also provide us with

a measure of the validity of the Drude theory at a given

frequency.

Beattie and Conn (1955) plotted the Argand diagrams

showing (2nk/k) against (n2-k a) for AI, Ag, Ni and Cu.

The values of F and t determined from the slopes vary
o R

greatly depending on the way the metal surfaces are pre-

pared. The best agreements of the d.c. conductivity values

o which are obtained upon substituting the Po values into
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the Drude equation (6), with the electrically measured

values were obtained for evaporated metal films. The

results of Beattie and Conn are presented in Table i.

Thediscrepancy between the measured and calculated

(Drude Theory) values of the d.c. conductivity for

evaporated films of Ag, Cu, Ni and A1 are found as 40%,

100%, 40 _ 50%, and 40% respectively. The calculated

values are always smaller than the measured values.

These results will be further discussed in a later

chapter, and it will be shown that the mentioned dis-

crepancy can be explained theoretically upon introducing

an additional frequency-dependent factor into the orig-

inal Drude equation.

For none of the metals that were studied by Beattie

an_ Conn '1955) did the Argand diagrams yield complete

straight lines. For AI, for instance, the curve starts

to deviate from the straight line at _8_. The deviation

becomes more pronounced toward the shorter wavelengths

as one might have expected. An interesting feature is

that the Argand diagrams start to deviate from a straight

line long before the wavelength enters the photoelectric

resonance tail.

With almost no exception, the d.c. conductivity
o

calculated according to the Drude Theory from the observed

values of optical constants is always smaller than the

_[rth_tr _!3£ittle,_rt_.
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measured value even when very carefully prepared metal

surfaces are used. Thus, it seems that the classical

free electron theory of Drude contains some basic limit-

ations.

Of all the existing theories on the optical and infra-

red dispersion in metals, the classical free electron

theory of Drude (1904, 1902) has been most successful in

explaining the experimental results aside from some ex-

ceptional cases that will be discussed later.

The Drude Theory has been applied to a large number

of metals with varying degrees of success. An excellent

review by Schulz (1957-a) and the review by Blau et al

(1958) gives a detailed account of this work as well as

references to many of the original papers. The basis for

the relative success of the Drude Theory lies in the fact

that, for a number of metals for which sufficient data on

(n0k) values are available, Equations (6) and (7) can be

fitted to the optically determined curves of _(e) and

[l-e(e)] upon adjusting P and _(0) or n and m* to suit-
o e

able values (Schulz, 1957-a,b,c, 1951, 1954; Beattie and

Conn, 1955; Seitz and Turnbull, 1958 and others).

For Au, Ag and Cu, which have their first resonances

at 0.37_, 0.27_, and 0.5_, respectively (Meier, 1910), the

Drude Equations (6) and (7) can be fitted to the experi-

mental curves with m*(Cu) = 1.45m, and m*(Au)= m*(Ag)= m



TABLE I

Metal

A1

Ni

gO

I

x i0 "Is e.s.u.

(calc)

11.6

i .02

o"d x

II

i0 -16 e.s.u.

(measured)

15.0

_II

aI

1.3

_[rthur _]._/ittle,_rtc.
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for k >/2 _ (Schulz, 1957-a) . The optical behavior of the

three sample monovalent metals is clearly consistent with

the Drude theory at least so far as the frequency depend-

ence is concerned.

Another example of excellent agreement between theory

and experiment is found in the liquid metals Hg and Ga

(Schulz, 1957-b). For these metals, the theory fits well

for k_ 0.3_.

Except for the case of the liquid metals, the success

of the Drude theory mentioned above is no more than a quali-

tative one. For the theory to be quantitatively consistent,

the values of the electric properties such as _(0) and e(0)

as well as other lattice parameters must agree with the

measured values when calculated from the measured optical

constants. And co**versely, the optical =vL,_=a**_ _a-_=_

from the measured values of _(0) and E_(0) should agree with

the measured values of the optical constants. However, in

practically all cases that have been studied, the d.c. con-

ductivity values calculated from the best-fit Drude curves

are found to be smaller than the handbook values, for mono-

valent as well as multivalent metals. Such discrepancies

occur sometimes by a factor of 2_ i0 (see, for instance,

Seitz and Turnbull, 1958; Beattie and Conn, 1955).

As it was shown by Beattie and Conn (1955), the d.c.

conductivity calculated according to the Drude theory from

_h:thur _l._ittIe,_tc.



-42-

the measured values of optical constants depends very

strongly on the manner in which the metal surface is pre-

p_° _h_ __p_y--.- _=s _m=11_a_ _"_ ^_ _ order

of 40 _ i00 percent, for the case of evaporated metal films,

while for metals prepared in other ways the calculated d.c.

conductivity values were smaller than the handbook values

by a large factor of 3 _ 5. Although the large discrepancies

in the case where the surfaces are prepared by a method

other than by evaporation may be explained as arising from

the crystal structure of the metal surface being disturbed

during the process of polishing such as introducing an

amorphous layer, the discrepancy for the case of evaporated

films is yet to be explained. The only cases where both

qualitative and quantitative agreements are found are the

liquid metals Hg and Ga.

In general, the agreement between the theory and ex-

periment for solid_ multlvalent metals is more incomplete

than for monovalent metals such as gold, silver and copper.

At best, a partial agreement over a narrow spectral region

can be obtained through suitable adjustment of the para-

meters ne_ m*0 and _(0). This procedure for multivalent

metal is Justified, as will be explained , when

the contribution to _(e) and e(_) of one band is predominant ,

over the second band contribution in a certain range of the

spectrum in the two-band description of the free electron
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theory. In this range of the spectrum, the metal may be

treated effectively with the one-electron formula of

Drude. By adjusting n e and _(0), Hodgson (1955) was able

to fit measured values of n and k for the divalent metal

Zn from 2 to 15 _ . The value of n e was substantially lower

than that calculated, and the value of _(0) substantially

lower than that measured. For the trivalent metal AI,

Hodgson (1955) and Beattie (1955) could fat the Drude

curves to the optical curves in the spectral range of

1 _ i0 _ , using suitably reduced values of n and _(0).
e

In spite of the good agreement found in the liquid

metals Hg and Ga, At was found (Schulz, 1957-c) that the

liquid alloys Hg-In, Hg-TI, and Ga-In are in complete dis-

agreement with the theory. This is An contrast to the

liquid alloys follow the Drude theory. But these studies

were confined to a very short wavelength range. Sgme of

the early studies on the optical properties of liquid

metals (Kent, 1919), bismuth, lead, cadmium and tin, in
i

the spectral range of 0.404_ to 0.579_ shows a remarkable

agreement with the Drude theory as shown in Table III.

_trthur _3Little,_rtr.



III-C Electron-Lattice Interaction and Anomalous Skin Effects

In the original theory of Drude (1904), the viscous

damping coefficient Fo was used without specific reference

to the physical mechanism giving rise to the damping. The

introduction of F ° was necessary in order to maintain a

consistency between the electromagnetic dispersion and the

finite d.c. resistivity on the basis of the free electron

model. In this sense, the damping coefficient was used as

a parameter whose magnitude was to be determined either

from the measured electrical properties or from the measured

optical data. Kronig (1927) reconsidered the problem in

the frame of the modern theory of metals, showing that if

the conduction electrons are treated as moving in a peri-

odic potential perturbed by the thermal agitation of the

lattice, they can be held responsible for the optical pro-

perties in the infrared as well as for the characteristic

absorption and refraction in the visible and near ultra-

violet parts of the spectrum. In other words, Kronig at-

tributed the occurrence of finite FO to the mechanism of

the electron-lattice interaction.

The mechanism of the electron-Lattice interaction or

the electron-phonon interaction as it is popularly inter-

preted in modern theory, and of impurity scattering when

the metal contains a substantial amount of impurities, has

shown enormous success in explaining various physical



TABLE III

LIQUID METALS

Metal

Ne/atom

(calculated)

i/_ o

( _ ohm/cm)

calculated

i/adc

(_ ohm/cm)
measured

Bi

5.1

128

134

Pb

5.1

94

98

33.4

34

Cd Sn

2.4 4.1

54

52

Hg

2.1

87.3

94

_rthur _3Little,_ttc
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qualities of metals such as the thermal and electric conduc-

tion, the Wiedemann-Franz law, the Matthiessen rule, the

dependence of the electric resistance on temperatureand

pressure, and many others. (See, for instance, Wilson,

1936 and Mott and Jones, 1936.)

The impurity scattering introduces a residual resis-

tance (Restwiderstand) and represents the temperature-

independent, additive quantity of resistivity in the

Mattiessen rule. A further progress on the behavior of

metallic conductors under the influence of electromagnetic

waves was made by Reuter and Sondheimer (1948) and was later

elaborated by Dingle (1953)0 Gordon and Sondheimer (1953)

and Pitaevski (1958). This work concerns the phenomenon

that is popularly referred to as the anomalous skin effect

Reuter and Sondheimer (1948)0 following a suggestion

of London (1940) 0 investigated the case, important at low

temperatures, that the mean free path of the conduction

electrons for collisions with the lattice is of the same

order of magnitudes as, or even large, compared with the

normal penetration depth (skin depth) of the electromag-

netic waves in the metal. In this case_ the way in which

the metal boundary influences the motion of the electrons

arriving there becomes important• The authors distinguished

two extreme cases: namely, that of the specular reflection

_/rthur_l._kittle, _Jm-.
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at the surface and that of completely diffuse reflection,

the latter being at least approximately realized in nature

added elaboration to the original theory of Reuter and

Sondheimer, and showed, in particular, that, especially

in the case of diffuse reflection, the values resulting

for the absorptivity A(=I-R) sf the metallic surface may

differ widely from the predictions of standard theory.

Qualitatively, this is to say that in this case the loss

of momentum parallel to the boundary, which an election

suffers when diffusly reflected by it, furnishes a contri-

bution to the real part of the surface impedance of the

metal. This contribution remains even if0 by lowering the

temperature, the bulk resistivity and with it the energy

loss in the interior of the metal are reduced. Hence,

the metal still retains a non-zero absorptivity when the

bulk resistivity is made to vanish by lowering the tempera-

ture to 0_K. This conclusion was qualitatively predicted

by the experiments of Ramanathan (1952) at the liquid

helium temperature. The success of the theory of anomalous

skin effect in accounting for the reflectivity of metals

has been conclusively demonstrated by Dingle (1953) and

Pitaevski (1958)o

In its present state of development, the theory of the

anomalous skin effect applies strictly to the alkali metals
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and monovalent metals such as Au, Ag, and Cu. Like the

simple Drude theory, the anomalous skin effect does not

apply in a region of strong resonance absorption. Table

II shows the values of the absorptivity A,

A = A + _ III-(14)
v s

for Cu and Ag, where A
s

A
s

is the diffuse skin absorptivity

3 (_) III-(15)= T

Vf being the Fermi velocity of electron and c the speed

of light, and A is the bulk contribution to the absorp-
v

tion resulting primarily from the electron-phonon inter-

actions. The values of A for Cu and Ag have been ob-
v

tained from the formula that will be derived in the cal-

culations of ChaPter IV. It is seen in Table II that
' i

the bulk and skin effects added together show agreements

with the experimental values up to about 2 percent.

Associated with the skin effect is the skin depth

which is the thickness at the metal surface in which most

of the optical skin effect is observed, and is given by
J

m,ce )%8 = III-(16)
s &_no e 2

and is in the order of several thousand angstroms. This

is not to be confused with the so-called penetration depth

.qrthur _13].ittIe,_ar.
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5p which is a distance characteristic of the surface pene-

tration by light of given wavelength and is the distance

at which the intensity f_11_ _n 1 _ _. _ _ .... _
e

It is given by

k

5i - 4_k III-(17)

where k is the absorption index. For sodium at k= 0.6_,

@

k= 2.6, and 51 is approximately 180 A. In general, 5I

is in the order of several hundred angstroms. The ex-

pression of (17) is reminiscent of the similar expression

for the penetration depth at radio frequencies

where _d.c. is the d.c. electric conductivity. The two

expressions are essentially the same as far as the quali-

tative estimations are concerned.



Table II

Low Temperature Absorptivity of Metals

Metals

Cu

Total Absorptivity A

Present

Theory

o.oo48

A1

Ag

Hg

Ga

Z n

Ni

T i

Pt

Experiment

o.oo5o
! Biondi (1956 )

0.008

o.o3o
t

-L

O. 037 I

o.0044
Biondi (i 956 )

AB=

o.003

AB= %_ io.0o8

0.015

0.054

Ir 0.093

Bulk

Absorptivit3

CA./A)

4o_

I

zo_

87%

87%

AB=

o.oo3

AB=

o.oo8

86%

AB=

o.054

94%

95%

Optical Data Used to
Calculate

A_, A_

Beattie Conn (1955)
Bor et al (1939}

Forsterling + Freederickz

Golovashkin eta]

Motulevich et al
1960)

1960)

Schulz (!951,1954)
Hodgson (1955)

Forsterling -YFreederickz

Schulz (1957)

Schulz (1957)

Hodgson (1955)

l

! Hodgson (1955)

Conn (1955), Beattie

I
I

Bradford (1957)
i

I Hass

f

'_ Forsterling Freederick
i (1913)
i

Forsterling Freederick
_l (1913)

t These are _the extrapdations from the liquid data, and are not
strictly valid for solids, except, perhaps, in the order of magnitude°

The skin absorptivity A s not computed.
.qrthur _3little,_ltc.
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Chapter IV

Quantum Mechanical Calculation of Optical and

Infrared Dispersion in Metals

IV-A Introduction

All of the existing theories are based on the common

assumption that Maxwell's theory of electromagnetism is

valid in the form that was discussed in Chapter II, and any

new theory which is based on the same assumption should

necessarily be formulated on the basic grounds laid by the

work that has been done in the past.

The classical dispersion equations are simply the

solutions to the equations of motion subject to Maxwell's

electromagnetic field° Therefore, as long as we confine

ourselves to that part of the spectrum where the free

electrons are mostly responsible for the dispersion, it is

quite natural for us to expect that a new theory which is

offered by quantum mechanical calculations should neces-

sarily be a "quantum mechanical free electron theory" which

can differ from the classical free electron theory only in

specification of the temperature dependence and also of

further frequency dependence if any_ in the viscous damping

and polarizability, etc.

Various quantum mechanical dispersion equations should

approach the corresponding classical equations in the limit

,qrthttr _l._Little,_ttr.
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of low frequency where _) approaches the value of _(0)

of the static case. It is hardly necessary to mention

that some Of th_ high f_m_,_, _ec c,_ =_ _ -_-

enon of anomalous dispersion arising from the photoelectric

resonance of bound electrons and also of the small but impor-

tant contribution of the core polarization can be explained

rigorously only with the aid of quantum mechanics.

Further we already witnessed in Chapter III one conse-

quence of quantum mechanical considerations at low tempera-

ture, namely the contribution of the anomalous skin effect

to the absorptivity giving rise to a finite non-zero ab-

sorption at 0K_

Compared with an enormous amount of qualitative and

quantitative applications of quantum mechanics to the pro-

perties of metals under the influence of static electric

fields, very little progress is found on the optical and

infrared dispersive properties of metals beyond what is

available from the classical free electron theories and

the anomalous skin effects. The less said the better on

similar considerations of alloys. However, it is self-

evident that the noble features of quantum mechanics

revealed in the metallic properties under the influence

of static electric field provide an indispensable tool

for examining the optical and infrared dispersion proper-

ties of metals, because as we saw in Chapter III, the two
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aspects of metallic properties are intimately linked with

each other. This was already qualitatively made use of in

the early studies of Mort (1934) and Mott and Jones (1936).

Further, much progress that has been made on the optical

properties of semiconductors can be extended to metallic

conductors with suitable modifications since, after all,

the semiconductors and metallic conductors may be considered

as differing from each other more in degree than in kind as

far as the respective conduction mechanism and properties

are concerned. The qualitative aspects of this feature was

already discussed in the early studies of Wilson (1936) and

more recently in the work of Bardeen and Shockley (1950)o

Some of the considerations that enter in the quantum

mechanical calculations may be mentioned as a) the Pauli

exclusion principle; b) the Fermi-Dirac statistics; c) solid

band structure; d) quantum mechanical interpretations of

various interactions that contribute to the viscous damping

of conduction electrons; e) the effect of core polarization;

and f) the effect of the bound electrons. The calculations

in the frame of the free electron theory involves consider-

ing explicitly all of the above except for the last twos in

addition to the fundamental relations available from Maxwell's

theory of electromagnetism considered in Chapter II. A

qualitative discussion on the effects related with e) and f)

was given in Chapter III0 and excellent discussions of these

_rthur _._Little._rt_.
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features, as to the mechanism and effects, are presented by

Van Vleck (1959) and Mott and Jones (1936) on e) and f),

respectively. A detailed discussion on these points is out-

side the scope of the present work.

In the theoretical calculations that will follow, it is

attempted to find explicitly the _- and T- dependent struc-

ture of the damping coefficient and hence the polarizability

and also the bulk absorptivity A v (_,T), in the framework

of the free electron theory and with the assumption of

spherical Fermi surface. That very little error is involved

in assuming a spherical energy surface for most of the body-

centered, face-centered and hexagonal cubic lattices was

pointed out by Wilson (1936) and Mott and Jones (1936), and is

shown in the following qualitative expression for d.c.

conductivity (Jones, 1956);

n ee

o_j_ = + e

d • c. 4_3_2
bE J - _kibk j

(l,j = i, 2, _)

where F(E) is the dimensionless electron distribution

function at energy E(k) and _(k) is the d.c. relaxation

lifetime of an electron with momentum (_k). Furthermore,

even for a metal which, in a single crystal, has a detect-

able degree of anisotropy, the spherical approximation of



Table IV

Metals with Large Anisotropy

,,,=

Metals

Ga (Solid)

Hg (Solid)

Sb

Cd

T e

_n

B i

Anisotropy in d.c. resistivit Y

Max.

55. (5)

23.5

42.6

8.3

i.5_1o 5

6.05

138

Ratio

7

17.8

35.6

6.8

1.32

1.2

1.22

5.6xi0 4

5.83

109

2.75

i.o4

1.27

i Reference

Powell (1949)

Sckell (1930)

Bridgman (1925)

Powell, Nature 164, 153 (1949)

Sckell, Ann. Physlk (5) 6, 932 (1930)

Bridgman, Proc. Amer. Acad. 60, 306 (1925)
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Fermi surface works well for a polycrystalline sample.

Some particular cases of metals in which interband tran-

sitions make predominant contributions to various elec-

trical and optical properties and for which nonspherical

Fermi surface must be used, will be treated in the

future chapter on transition metals.

The results on transition metals should apply equally

well to other nontransition_ multivalent metals when inter-

band transitions need to be considered.

For metals to which spherical Fermi surface applies,

effect of the periodic lattice is incorporated entirely

into the effective number of electrons per unit volume and

the effective mass. This is in accord with the "effective

mass method" which will be discussed in more detail in the

foiiowiny section of this chapter. _nen, for a metal which

is free of impurities, the only perturbation to the elec-

tronic motion originating_ from the presence of lattice is

the election-phonon interaction or the interaction between

the "free" electrons and the thermal vibrations of the

lattice represented by a finite temperature-dependent dis-

tortion of the lattice from the perfectly periodic potential

of 0°K. Such a perturbation decreases rapidly as tempera-

ture is lowered to the absolute zero. The metals with a

substantial impurity content and alloys_ especially the

ones with a random lattice, are exceptions to this picture:

_[rthur _3-_ittle,_t_.
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there is a finite, temperature-independent perturbation

giving rise to a non-zero resistivity at 0°K, the total

__"_"_ _ _ .... _'" _- pl additio al he p_._ _.._ _** _ _**_ us an n m era-

ture-dependent term (Mathiessen's rule), (Mathiessen and

Vogt, 1864).

The bulk absorptivity A v, the conductivity _(e) as

well as the damping coefficient are calculated from the

result on the rate of energy expenditure W(e,T), which is

related to _(e), according to the free electron theory,

by

= E 2
n e _ _(_) IV- (i)

where _(_) is in turn related to the damping coefficient

through the typical free electron dispersion equations,

and where (Ee/2) is the energy density per unit volume

of the electromagnetic radiation field.

Idnetification of the damping coefficient in the

final expression of W is straightforward when we compare

the result with the corresponding d.c. expression derived

in Wilson's theory of metals (1936). Thus, the approach

adopted in the present work differs from the usual method

of finding the damping coefficient directly by calculat-

ing the inverse of transition lifetimes (relaxation time)

from the transition matrix elements.
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IV-B Calculational Method and Assumptions on Dampinq

Interactions

It will be assumed that the predominant contribution

to the electron damping comes from the electron-lattice

interaction in cooperation with the perturbing electro-

magnetic field. The contribution by electron-electron

collisions, which are important at very high frequencies

and at very low temperatures_ will be combined with the

results of the present chapter using the formulae obtained

by Gurzhy (1958). Further, when metal contains a sub-

stantial amount of impurities_ the effective damping will

be the sum of the contributions by electon-phonon pro-

cesses, electron-electron collisions and impurity scattering.

The additional contribution by impurity scattering is

responsible for the temperature-independent residual

resistance in the Mathiessen rule. In the present chapter,

calculations will be carried out for a pure metal. However_

if the impurity effects need to be considered_ a constant

term is to be added to the damping coefficient° This ad-

ditive constant may be calculated from either an optical

data (Golovashkin et ale 1960) or from low temperature

measurements of d.co resistivity.

In this chapters only those transitions which take

place within a single band in the lowest Brillouin zone will

_Irthur _13Little,_rt_.



-56-

be considered: i.e._ intraband transitions. The case

where the interband transitions are involved will be left

to a future chapter on transition metals.

Once we adopt the Hamiltonian in a specific forms

various transition probabilities can be found by the

usual quantum mechanical methods° We shall use the per-

turbation method similar to what was used by Wilson (1936)

and Holstein (1954)o Then0 the transitions which are

responsible for the damping and dispersion are the second-

order processes in which an electron initially at the

momentum state k I makes a transition to the final state

k_e upon simultaneous absorptions or emissions of a phonon

and a photon°

We de fine

(+)/k .P(±)

as the probability per unit time for a conduction electron

to make a transition from the state ki to the final state

k2 with simultaneous photon and phenon emissions (+) and

absorptions (-) when it is certain that the k 2 state is

completely empty and k l state is completely filled and

where the superscript (+) designates the phonon processes

and the subscript (-+) the photon processes°

According to the Fermi-Dirac statistics_ the probabil-

ity that the state k with the corresponding energy E(k) is
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filled at temperature T(°K) is given by the Fermi function

f(E) = 1
1 + eO(E-EF ) IV-(2)

where Ef is the Fermi energy and 8 is (KT) -l , K being the

Boltzmann cQnstant. Then, the total probability per unit

time of an electron initially at the state _i to make a

transition to any of the other empty states by either one

of the four processes designated by the supercript and

subscript (±) will be given by

(±) (±)/-
/

where the factor 2 comes about because, according to the

Pauli exclusion principle, two electrons with opposite

spins can occupy the state with same k and E(k). The ap-

pearance of [l-f(Ee)] embodies the Pauli exclusion

principle.

In order to represent the gross manifestations of such

microscopic transition processes, we have to average the

probability of (3) over all the initially occupied states

according to the Fermi-Dirac statistics. The resulting

average value of probability (P) per unit time will be in

the form
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where r, s = (±).

Then, following Holstein (1954), the power expended

by the electromagnetic radiation field is defined as

• Iv-(5)

r:(±)

This implies simply that the net power expenditure is

the total power absorbed minus the amount which is emitted

into the radiation field. There is an analogy between (5)

and the corresponding statistical mechanical formula of

Wilson (1936).

The relation (5) is dependent on both the frequency

and temperature T. A part of the temperature dependence

comes from the Fermi-Dirac statistics of the electron dis-

tribution and the other part comes from the Bose-Einstein

statistics of the phonon distribution (the thermal vibration

of lattice) which enter in the Hamiltonian averaged over

the distribution of phonon states.

Once the T- and e-dependent expression for W is ob-

tained various dispersion formulae follow naturally. For

instance, the high frequency conductivity _(_) is given

by
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new - E e2 _(e) IV-(6)

Thus, it is evident that the main task of theoretical

calculations is in finding correct values of W or (P).

In general, the expression for W will vary depend-

ing on the particular physical model of the system, the

methods of computation, and the particular Hamiltonian

that are adopted. According to the effective mass method

of Peckar (1946), Slater (1949), Wannier (1937), and

James (1949), and to the theorems developed by Bardeen

and Shockley (1950), the electrons in an isotropic (cubic)

lattice may be considered as free electrons of effective

mass m*, and when the lattice is distorted by a small

amount resulting in a small change in the potential,

Vp U = Ud(X) = Uo__,'--_ _TV-(7)

the amplitude part of the electronic wavefunction A(_)

satisfies the Schr_dinger equation

_7e + _U A(x) = EA(x) IV-(8)
2m* -- --

where Uo(_) is the original undistorted periodic potential

and Ud(_) is the distorted potential which depends on the

strains e that are imparted to the lattice in distortion.
13

/

If the lattice is not cubic, we must replac_i-_ V2h by
Am- /
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<m-_ _2 1 _2 1 _2 )i _x# + m_ _ + m_ "_zT

where (x _, x 2, x_) are the three principal -axis coordinates,

* m_) are the three values of effective mass.and (m_, me0

The amplitude function A(x) is a smoothly varying function

which does not vary appreciably over the unit cell: if

A(x) does not meet this conditions the method of effective

mass is inadequate without a considerable degree of refine-

ment. In general, wavefunctions of electrons in metals are

rather flat except in the middle of the atom (Mott and

Jones, 1936)_ and the volume within which the wavefunction

is not flat is relatively small, so that the charge density

in the flat region is almost exactly <_o _' where V O
is

the atomic volume. This flatness of wavefunction is the

reason why the approximation of neglecting the periodic

field (free electron approximation) gives good results for

metals, and thus Equation (8)_ should work. According to

Bardeen and Shockley (1950), the electron-lattice potential

V (x) may De taken in the form
P

V (x) = gL (x)
P

where g is a constant and £_(x) is the dilation. Neglecting

the other terms in the expansion of Vp(X) in powers of the

strain e.. is equivalent to neglecting the dependence of
xj

the effective mass on the strain. It was shown that the

IV- (9)
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next largest term in V (x) to that given in Equation (9)
P

is proportional to the square of momentum times the strain

0(ka x strain)

and, for the usual order of magnitude of k e involved in

metals and for the size of the strain in the thermal

agitation of the lattice, this second term can safely be

neglected.

IV-C Transition Probability Calculation

Following Bardeen and Shockley (1950) and Holstein

(1954), the Schr_dinger equation for a conduction electron

interacting with the perturbing electromagnetic field

and the lattice vibration may be written in the form

i n _ 1 (-in v
t = 2m*

+
\ 7ce A_ $ + Vp(X)$ xv-(10)

where Vp(X) is interpreted as the electron-phonon inter-

action potential given by

V (r) = g div u(r)
P

u(r_) = @q,j j (c[)e mH, J + c.c

R,J

aj (_) :_(n_,j/mpov%, j)

--j(, t2,j+  l/ 0oV%,j)

zv-(11)

.qrthur _l._Little,_nn
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where (aj*(c[) , aj (_)i!) are the phonon creation and

annihilation operators, Po is the mass density, _ ,j

_^_._=phonon frequency

is

_c[,j = E ,j

and (eq,j) are the orthonormal basic vectors

(_, ^ _jjj • e ) =_,J

and g is a constant whose value is of the same order as

the electronic energy.

For an isotropic lattice, we have the simpler

expression

V (x_ = ig q 2N MVE
P p

R

% [N_) ei(R'x " EKtl_i)

IV-(12)

where we have used the following notations:



a :

V :

N :
P

q •

E :

N -
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Mass of the lattice

The sample volume

Phonon number density (per unit

volume) = __eg__
M

Phonon wave-vector (momentum/_)

Energy of a phonon at the state (_[)

The number of phonon states for E_that

are occupied, and is according to

Bose-Einstein statistics,

N (¢[)=
1

e _E_[ - i

In practice, it is often possible to distinguish longi-

tudinal and transverse waves in a crystal and discard the

latter because of the factor (_j-_[) in Equation (ii). This

is what has been done in obtaining Equation (12). This is

also related to the approximation of taking E dependent

only on the magnitude q and using the simple Debye disper-

sion of phonons when the accoustic branch of phonon spec-

trum makes predominant contributions. When KT has a value

comparable to the discrete quantum of upper branches, the

optical branch contributes significantly.

In the present work, the electromagnetic field will

be treated purely classically and we will use

_rthur _l._ittle,_ttr.
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A(X) = <.A(x)e-i_t + A*(x)e+i_t>

eE _ i(_.x-_t) -i(p.x-et)>= -i 2_ e -- - e --

where _ is the electric amplitude vector which saris-

fies (E._)=0 when we choose A to meet the divergence

condition (V.A)=0. The Schr_diger Equation (10) now

becomes, upon neglecting the term quadratic in A,

IV-(13)

8t = - _ _Te_ + im*c --A'_7+ Vp
IV- (14)

In the absence of the perturbation by the electromag-

netic field and the lattice vibration, the stationary

states of electrons are represented by the wavefunctions,

_(x,t) = e i(k'x - Ek--t/_) xv-(15)

where

E k = ({Sek2/Zm *)
IV-(16)

The perturbed wavefunction _(_,t) may be expanded

into a superposition of the unperturbed, free electron

states in the form,

_(x,t) = I B(k)_k(x't)

k

IV-(17)
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where B(k) is the expansion coefficient with an explicit

time dependence. By substituting Equation (17) into (14),

the equation of motion for B(k) is obtained as

__ [ i(Ek- Ek_a-_)tl_
I{5_B (k) = e_2im._(k.E) [B (k-p_e -

- B(k_ei(Ek - Ek_+£+ {5o_)tl_i]

+ ig 2N MVE B(k-_ _ e l(Ek" Ek-_l'E_)t/_

P _I
R

-B(k_.+_) _ e i(Ek" Ek+_ + E_Dt/_i] }

iv-(18)

In the absence of the lattice vibration we would have

only the first term [---] in Equation (18) arising sole-

ly =--- _^ ele g ti _I_ T_ _. +__x_,u _,,= ctroma ne c _ .... _.._ case, ....

coefficient B(k) cannot be made to increase indefinitely

with time because the energy terms

Ek-- v +__

in the exponents cannot be made to vanish. In the

language of perturbation theory, the transitions are at

most virtual and this corresponds to the fact that a

photon cannot be absorbed or emitted by a free electron.

Therefore, the electromagnetic perturbation alone cannot

explain the damping in optical dispersion (Heitler, 1957).

_rthur _._ittle,_nr.
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Following the usual procedure of the perturbation method,

we write

B(k) = 5(ko_) + B(1 ) _k% + B f_% _......... (2) '_'

T_7_ f I Q%
_w %U-.* I

where B(I ), B(2)... are the first order, second order,

..o terms for an electron which was certain to be at the

state k initially.
--O

The electromagnetic and the lattice

vibration terms will be considered as the first order

perturbations in Equation (14). Then, B(I ) in Equation

(19) will contain only those terms which are in the

first power of E and g as well as those quadratic in

each of E and g. The combined action of the electro-

magnetic field and the lattice vibration is described

by that term of B(2 ) which is bilinear in E and g, and

we will need only this part of B(2 ) for our dispersion

calculations.

In order to calculate B(2 ), we need to obtain B(I )

first° By substituting Equation (19) into (18) and

collecting the terms which are of the first order in

and _, and integrating in time from 0 to t, we obtain

the following:
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(i) (kJ : [ < _(zk- zk._- _)t/_. z>i645(k.E) 5(k_o,k. _ e -- _

2m*oo Ek- Ek. p-

. i (Ek- Ek_+_!+_) t/_. I ._
- 8(k_o,k__) e _k_-zk-_ mm

IV-(20)

- igl 2N _9JE -- Ek- Ek. R- E
P R K

R

- £N(--$%?(, e (Sk-"

Using Equation (20) in (18), and collecting only

those terms which are bilinear in E and g, we obtain

B(2)(k--+_I-+P_: 2N MVE _ k 2m_o y [N(!D+I ]
P R

[_. __ ' k ._ ei_t/_ 1
k-+-_ + --

E • - Ek_ E Ek_ _-- Ek-+_ _ R Ek+£ - _

IV-(21)

(k -+ q) ei_'t/_-i k

X _ ' " Ek__ l_c_)(Ek+ q- Zk__ Eq (Zk__+p-

where k is new written in place of k m, and

,.qrthur _13Zittle,_tr.
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-- Ek_± E

Ek+_[+ D- Ekj_W

= E.+ _E" Ek+_c[_+_- K___

IV-(22)

The probability per unit time, P(k__k+c[_+_) for the

electron to make a transition from k to (k+_[+D) under

the combined action of the electromagnetic and acoustical

fields is given by the absolute square of B(2 ) divided by

time,

IV- (23)

A significant contribution to Equation (23) comes

from those situations where one of the energy denominators

contained in Equation (21) becomes zero. Only in such

cases does the transition probability per unit time ap-

proach a constant nonvanishing value for a large t. The

zeros of the energy denominators may be grouped into two

categories: those which involve a colncidence of initial

and final energies inclusive of the photon energy _ and

phonon energy E [, and those which arise from an energy

coincidence of an intermediate state with either the

initial or final state. The two terms of Equation (21)
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which contain _' and _" will not contribute to the over-

all transition probability, since they cancel out in cal-

culations of the energy expenditure. It is easily shown

that

VF

c

On the other hand, the zero, _"=0, is physically possible

and the resonance factor containing _" gives rise to 8(_")

in the expression for the transition probability. However,

the terms with _' and _ " contribute equally to both absorp-

tion and emission processes of photons, and the over-all

contribution from these terms to the net absorption, which

is obtained from

p (-+)

cancel out. Therefore, we only need to evaluate the tran-

sition probability at the singularity _=O,

Equation (21) may then be replaced by equation,

FIVE 2m*
B (2 ) (k---+_+D) q 2Np

-- -+ -- -I

X E_" Ek___..q.Ek_.Eq+ Ek_+p_Ek_ _ E_k_+q_+p- Ek_- i_iooT-E

zv-(24)

_rthur _13£ittle,_rtc.



-70-

Let us consider the transitions k__(k+c[+D) first.

We notice that

_equantitieso_the_orm_ E_repre,entthe

(v/C) corrections, and will be ignored. Furthermore,

may be taken equal to zero in Equation (25); a deviation

from zero need be considered only in the last factor of

Equation (24) representing the resonance factor.

Equation (24) is then replaced by

iv-(25)

B(2 ) (k_+c_+_) = q <
2Np _ 2mW_

×
E_.K ei_ t/X_ 1

X

_ + Ek- Ek_+£
_v-_

for the transition, k _k+c[+_.

The transition probability P(k_k+_+D) may be evalu-

ated readily from Equation (26) upon taking

(Ek_+_- E k-- _-_ - _

and following the popular practice (Heitler, 1957),
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8(_) =
Lira _% i

t _ 2_ t

-i

Lira _ 1

t __ _ 2_ t I i _t/_i

e -i

dr'

We thus have

P (k _ k_+_) =
_ga N (¢[)ea_ 5 q 2

4NpMVE [m* e_ e

(E"_[)e 5(_) IV- (28)

Upon introducing the final state momentum k a as

(k_+c[+_) and denoting the initial state k as kl. and

noting also that the argument _ of the delta function

8(_) represents the absorption of a phonon and a photon o_

energy _ and Eq respectively, we may rewrite (28) into

the form

(') _q2 N (q)e2g2

P(_) (kl_k_e) = 4NpMVEqm.2_4 (E_ _ _[)e 5(E2_ El_ E4-_0o) IV-(29)

where the superscript (-) refers to the phonon absorp-

tion and the subscript (-) to the photon absorption.

From now on, the photon momentum _ will be neglec-

ted for the reason stated previously, and represent the

final momentum ke as

k__e = k_l +-_[ IV-(30)

_rthur _l._Little,_ttr.
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Then, Equation (29) may readily be generalized to

include the emissions (+) of phonons and photons as well,

_._ _ ,_=v= _**= _=**=L=I formula,

(±)
P(+) (kl_ lc ) = G (+) (q) 5(Ee- El+ F + _0_) IV-(31)

whe re

G(+) (_[) = _Nqeg2<N(_[)+I>NME N(_)

P

IV-(32)

which are proportional to the probabilities of absorp-

tion (-) and emission (+) of phonons without scattering

(Wilson, 1936; Born and Huang, 1956).

we evaluate (P_])(r,s=±)from Relations (3)
Next

and (4). Substitution of Equation (31) into (3) gives

us

(r)) _ e2(E.!D 2P (k-l) = 2Vm.2 _ 4

k2

G(r'(q)_ [l-f(E2) ]5(Ee- El+ rE + s_)

The summation over the final momentum states k_2 may be

replaced by corresponding momentum integral.

IV-(33)
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8(_) =

We thus have

Lira _ i

t -_oo 2_ t

Lim z_!_
t -_ 2_ t

-i

e i _t/_ -i 12

J

dr'
2

IV-(27)

P (k _ k+_+_) =
_gaN (c[)ea_3q 2

4NpMVE [m* e_ 2
5(_) IV-(28)

Upon introducing the final state momentum k a as

(k_+c[+_) and denoting the initial state k as kx, and

noting also that the argument _ of the delta function

5(_) represents the absorption of a phonon and a photon o_

energy _ and Eq respectively, we may rewrite (28) into

the form

(-) _._6.q;_N(q) e2g 2
P(_) (k_._-_): •

4NpMVEqm.e_4 (E _ q)2 5(Ee" Ez" E4-_i_) IV-(29)

where the superscript (-) refers to the phonon absorp-

tion and the subscript (-) to the photon absorption.

From now on, the photon momentum _ will be neglec-

ted for the reason stated previously, and represent the

final momentum ke as

k--e= kz-+S. IV-(30)

_[rthur _3iittle,_nr.
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Then, Equation (29) may readily be generalized to

include the emissions (+) of phonons and photons as well,

and we have the general formula,

P((+±))(kl___ _k ) = G"+"(_ (q) 5(E2- El+ F + _o_)
q

IV-(31)

whe re

G(+)(_[) = =hqeg2<N(_[)+I>NME N(c[) ,
P S..

IV-(32)

which are proportional to the probabilities of absorp-

tion (-) and emission (+) of phonons without scattering

(Wilson, 1936; Born and Huang, 1956).

Next we evaluate (P_]> (r,s=±)from Relations (3)

and (4). Substitution of Equation (31) into (3) gives

us

(r) _ e2 (E.q) eP (k--l)= 2Vm.26D 4

ke

G(r_(q)_ [l-f (E2) ]5(Ee- El+ rE -F s_)

The summation over the final momentum states k_2 may be

replaced by corresponding momentum integral,

IV-(33)
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v(e_) 3 (dk_

dk__2 = k22 dked_e

dE 2

Igrad E21
dSk2: dSke = k2ed _e IV-(34)

In virtue of the relation, q=±(ke-kl), the summation over

ks is equivalent to summation over the phonon momentum

and also to replacing the summation by the corresponding

integral in momentum space,

Z v(2_)3 (ds) ...
g

At the same time, At is expedient to average over the

direction of the electric field with respect to q.

One thus obtains

zv-(35)

ro +I

P(s) (k-a) = 4s_3m.2m4 q4dq d_ G (r) (_) [1-f(g2) ]

0 -1

2m* + _ kzq_ + rE +q

IV- (36)

where we have taken (E__._,-_e= _ qeEe and _=cosO, 8 being

the angle between the momenta, k_a and _, and E e=

E2(_ -+g).

_h'thur _._!ittl_,_tc.
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The integral over q extends from 0 to the maximum

value qo where qo is determined from the Debye tempera-

ture @ and the longitudinal phase velocity of sound u.

by the relation,

_uLq ° = K_

where K is the Boltzmann constant.

equivalently from the phonon number density Np per unit

volume,

IV-(37)

It is also determined

4_r i 3 o3/Np - 3 (2 _)3 qo = q 6_e IV-(38)

Here we have assumed the simple Debye dispersion of

phonons. This approximation is known to be satisfactory

at ordinary temperatures, such as in heat capacity cal-

culations. The shortcomings of the Debye model of lattice

appear mostly at very high temperatures where the average

momentum transfer in electronic processes is considerably

larger than the Debye cut-off value, and also at very low

temperatures. More complete formulation of phonon dis-

persion is available; see, for instance, Leighton (1948)

on monovalent metals and Bardeen (1937) for a more

rigorous form of electron-phonon interaction involving

the Umklapp processes important at very high temperatures.

The work of Leighton (1948) shows that a more general
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treatment than Debye's model of the lattice dispersion

leads to zormulae which are essentially the same as those

obtained from the Debye theory, except at very high tempera-

tures. The difference is that the Debye temperature _ is no

mere a constant but contains a small temperature-dependence.

The dviation of _ from the value determined from room tem-

perature measurement of heat capacity_ for instance, becomes

more enhanced at lower temperatures° The temperature-

dependence in 8 has also been discussed by Wilson (1936).

In general, the usual Debye temperature 8 and its low-

temperature value e_ (notation used by Wilson) are in the

same order of magnitude. It is expected_ therefore, that,

as long as the Debye cut-off is used as a parameter which

is to be adjusted within a small margin in the neighborhood

of its r0Qm temperature value0 the Debye theory is satis-

factory in the present formulation. Furthermore, it will

be shown that various optical and infrared dispersion

properties are not very sensitive to a small variation in

8,

The delta function in Equation (36) is eliminated by

integrating over _ from (-i) to (+I)o The existence of

a real _ such that the argument of the delta function

vanishes for all q between zero and qo 0 has been asserted

by Wilson (1936) in his calculations of d.c. conductivity.

That the same can be asserted in the present work involving

._[rthur _13LittIe,_rtr.
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an electromagnetic field is shown in the appendix.

qo(r_ eeE 2 ¢_

P(s)'(k_1) = e4_em,_4_ekl J q3dq G"" (q) [l-f(E l- rEq- s_k_)]
O

IV- (39)

the normal ization,

f(E1)

In these calculations, we shall assume that the Fermi

energy Ef obeys the condition,

Ef >> _k_, KT IV-(40)

Thus, it is equivalently assumed that, for the

frequency range that is of interest, most of the tran-

sitions take place in the neighborhood of the Fermi level,

In obtaining Equations (36) and (39), it has been

assumed that N(_), E and hence G(r)(q) depend only on the

magnitude q and not on the angular variables. The only

part of Equation (33) where the dependence on the azymuthal

angle appears was in (E_)a with _i as the polar axis.

The argument of f(---) in Equation (39) results from

satisfying the delta function after integration over _.

Calculation of (_)>-- proceeds by multiplying (39) by the

Fermi function f(El) and summing it up over the initial

momentum state _i, and dividing the entire expression by
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treatment than Debye's model of the lattice dispersion

leads to xormulae which are essentially the same as those

obtained from the Debye theory, except at very high tempera-

tures. The difference is that the Debye temperature Q is no

more a constant but contains a small temperature-dependence.

The dviation of 9 from the value determined from room tem-

perature measurement of heat capacity_ for instance, becomes

more enhanced at lower temperatures° The temperature-

dependence in e has also been discussed by Wilson (1936).

In general, the usual Debye temperature 8 and its low-

temperature value e_ (notation used by Wilson) are in the

same order of magnitude. It is expected_ therefore, that,

as long as the Debye cut-off is used as a parameter which

is to be adjusted within a small margin in the neighborhood

of its room temperature valuea the Debye theory is satis-

factory in the present formulation. Furthermore, it will

be shown that various optical and infrared dispersion

properties are not very sensitive to a small variation in

8,

The delta function in Equation (36) is eliminated by

integrating over _ from (-i)to (+i)o The existence of

a real _ such that the argument of the delta function

vanishes for all q between zero and qo _ has been asserted

by Wilson (1936) in his calculations of d.c. conductivity.

That the same can be asserted in the present work involving

_rthttr _l._littI_,_rtt-.
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an electromagnetic field is shown in the appendix.

qo

(r) _a,,2 F
P(s) (k-l) = 24_2m_4Tiekl _ q3dq (q) [l-f(El- rEq slg_)]

0

IV-(39)

In obtaining Equations (36) and (39) , it has been

assumed that N(_), E and hence G(r)(q) depend only on the

magnitude q and not on the angular variables. The only

part of Equation (33) where the dependence on the azymuthal

angle appears was in (E,_)a with _i as the polar axis.

The argument of f(---) in Equation (39) results from

satisfying the delta function after integration over _.

Calculation of (_:_)> proceeds by multiplying (39) by the

Fermi function f(Ez) and summing it up over the initial

momentum state _i, and dividing the entire expression by

the normalization,

In these calculations, we shall assume that the Fermi

energy Ef obeys the condition,

Ef >> _, KT
IV-(40)

Thus, it is equivalently assumed that, for the

frequency range that is of interest, most of the tran-

sitions take place in the neighborhood of the Fermi level,
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P(s))(_ (kl)F(E I) differ, from zero only in the neighbor-and

hood of EI__Ef. With these assumptions being considered,

the density-of-states factor _E I may be taken out of the

integral set equal to _Ef. Then, we obtain

(r)_ )-i (r)('(,)" (I f(ED-- x f(EDP(,) (k_)

qo

eaEe F G (r) (r),.
16_am*m4_2k°E f Jo q3dq (q) F (s) _"

(r)
where F(s ) (q) is the integral,

IV- (4!)

GO

(r) _ e z 1

F(8)(q) ----_$ dz i_ z • l_Z_
-- 00

z = B(EI - Ef - rEK - sF_o)
IV- (42)

a = ,(rE + _o)

(r)(q) can be evaluated exactly, and we
The integral F(s )

have

F_sr](q) ffi(rE + s_m)_eB(rEq +s_)-q 1]
IV-(43)

The power expenditure W(_) which was defined in Equation

(5), can be evaluated using Equations (41) and (43), and

_[rthur _13Little,_.r.



-78-

_uLq = Eq =_o_
IV- (44)

along with the Relations (37) and (38), and it is in the

form

W(0_) = __ eaEe F q°16_Sme_3koE f u q3dq G(r)[F((._)- -F(+)J(r)7

r=+ o

IV-(45)

We substitute G (r) of Equation (32) into (45) and use

/

N(q) = I/e BEq - 1

/

In order to obtain the power expenditure per unit

volume, it is expedient to introduce the effective number

of electrons per unit volume, n e-

manipulations, we finally obtain,

After some algebraic

me (+)R E2
ne m* 2_ Z (_, T)

where R is constant given by

R - 9_3 _2geN /(2m*Ef) % MK8
2 p/

and Z(e,T) is a function of both _ and T given by

IV-(46)

IV-(47)

Js (e_'l)SJ(_,fx) = e_slnh(_) (_'_)" e2_- 1_t _ J4 (_'a)

(e_'l)e }-2 e2_- i _ K4(_,a)

IV-(48)
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P(s))(r (k--I)F(EI) differs from zero only in the neighbor-and

hood of E I __Ef. With these assumptions being considered,

the density-of-states factor _E I may be taken out of the

integral set equal to _Ef. Then, we obtain

(p(r), < _f(E1)) -I(s)_ = x
k_

(r)
- f (_.1)p (s) (_)

e2E2 _o qo (r)16_2m, m4_akoEf q3dq G (r) (q) F(s) (q)

IV-(4!)

(r)
where F(s ) (q) is the integral,

+f z(r) • i
F(s ) (q) = dz l+eZ • l+eZ+a

z = 8(E I - Ef - rE - s_)
IV-(42)

a = 8(rE + 8Ttct_)
"i

(r)
The integral F(s ) (q) can be evaluated exactly, and we

have

F_sr](q) = (rE + sRm/eB(rEq +si_)-q I1
IV- (43)

The power expenditure W(_) which was defined in Equation

(5), can be evaluated using Equations (41) and (43), and

_rtllur _l._Little,_.r.
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_uLq = Eq =_ IV-(44)

along with the Relations (37) and (38), and it is in the

form

W(_) = I e2E2 f q°q_dq G(r)[F((_) - (r)7
16_emel,_koZ f _. - F(+)J

r=+ 0

IV-(45)

We substitute G (r) of Equation (32) into (45) and use

N (q) = i/e 8Eq
- 1

In order to obtain the power expenditure per unit

volume, it is expedient to introduce the effective number

of electrons per unit volume, n e-

manipulations, we finally obtain,

After some algebraic

me <+>R E2
ne m* 20_e Z (_, T)

where R is constant given by

R - 9_32 _egeNp/(2m*E; )% MK8
/

and Z(_,T) is a function of both _ and T given by

IV- (46)

IV- (47)

J(_t,CZ) = e_sinh(_t) _'_J (_,0 O- (e_'l) 2 _ j4(_t,O0
_5 ee_- i

-2 e2_- i _tK4(_,O0

IV-(48)



where
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B= ; 5=

Jn(g°_) = _o yndy/(eY- eg) (e_- e-y)

Kn(g0_) = f yndy/(eY- eg) (eg- e -y) (e y- l)

O

IV- (49)

This is the basic relation from which important dispersion

relations will be obtained in the succeeding parts of this

chapter.

A close examination of relations (48) and (49) reveals

that Z(_,_) approaches values which are independent of_ and

hence _ in the limit of _ >>_ and also when _ _0. In parti-

cular, when _ _0, we have

Iv-(50)

where

o f 1Js(_) = ySdy/(e y- i)(I- e -y) = _(_,_) B=0 IV-(51)

O

This is identified with Wilson_s J5(_ , and, more impor-

tant, with Gr_neisengs formula (Gr_neisen_ 1933) for tempera-

ture-dependence of d.c. resistivity when we multiply by _-5

The _-dependent quantity Z(_e_) has no precedence in

the classical theories and hence constitutes an important

consequence _f the present theory.

artllur _.:_!ittle, _3nr.
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For the coming discussions on dispersion properties,

it is convenient to define the quantity b (_,_), the
ep

subscript e.p. signifying the electron-phonon processes,

such that

bep(_,6) = Z(_,_) = 1Z (0,_) jso(_) Z (_,5)
IV-(52)

The numerical values of b (_,_) can be obtained when
ep

we evaluate the values of J (_,_) and K (_,_) for
n n

values of _ and T. The d.c. quantities Jn(_)arbitrary

and K°(a) have been discussed in many references and are
n

available in calculable forms. All types of integrals

which enter in evaluation of bep(_,c_) are discussed in

the appendix, and the results are given as follows;

(for n > 0)

ee__l

n

___ n-<n_ (o_-_)m+l.__ e_'g- 1
m=0

+ (.i) n'm+1
(_._u) "+z

m41

- (-I) m+z (e_+[-I ]n)
e_+_.l e'-1

+ JmO+1(_._) + (.l)n-m+1 jo (_a)m+1

o- (-I)m+2 Ji+1(.)(i +[-l]n+b zv-(s3)
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K (_,_) : (eS_-l) (e_-l) e_+C_.l - e_.l j

+ e_(.l)n-m[jo jo ] (CZ-_)m+I .(.l)m+1 _m+1m+_ (_+_) " ,.+I(_) + e_'_.1 e-__l

+[jo ( 1)m+l jo ]m+1((_'_) + " m+1(_t) - (m+l)e_(-l) n'm _m((_+_;_)

- (re+l)_m(_-_;-_)}- (l+e_)n+l
_"+_ O+e_)

IV- (54)

o
where J_Fl (X) is the same as what was defined in

equation (51) with the only difference that the upper

limit (% in equation (51) is to be replaced by x, and

a

_n(a; b) =/ yndye-Y zv-(55)

b

o

Numerical evaluation of the d.c. quantities {Jn(X)_

is considerably s_mplified in the l_iting cases,

X << 1 (high temperature) and x >i>i (low temperature) .

_rthur _.%Little,_,tr.
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For x<< i, we have

X

o / (yn-a 7, nJm (x) -- - --_2Y +--')_Y-
0

n-I

n-i 7 n+l

- -- x - 12rn+1_,' x +... IV-(56)

and for x>> i,

0

Jn(x )

oo oo

o /yno ZlJn (_) = n = n' --
ey -i rn

0 r=l

IV-(57)

(e.g. J (_) = 124.4)
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K(_,_) : (e2_-l)(e_-l) m L e_+_-I " e_-lJ

+ e_(_l)n'm[ ° o ] (O_-B)m+1.(.l)m+1 _m+1J_+_(_-_) - _+_(_) + e_._.1 e-_. I

[jmo+1 (C_._) (.l)m+1 jo+ + m+_(_)] " (m+l)eB('l)n'm _m (OHj_;_)

_"(_'";'")_'3 (1+e") _+_ O+e ") o(re+l) " n+l _ n+l Jn+1(_)

IV-(54)

0
where Jm+l(x) is the same as what was defined in

equation (51) with the only difference that the upper

limit _ in equation (51) is to be replaced by x, and

a

_n(a; b) =j yndye'Y IV-(55)

b

0

Numerical evaluation of the d.c. quantities {Jn(X)

is considerably-simplified in the limiting cases,

x << 1 (high temperature) and x >>i (low temperature).

_rtllur _._l£ittle,_nc.
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For x<< i, we have

X

J_(° 7(Yn'2- 7.. nma y

0

dy i%-1+ ,,, - X -
n-I

7 n+l

l_(n+!) x +... IV-(56)

and for x>> l,

oo

o oJn (x) _ Jn(_) = n

0

OO

yn-ldy = n.' Z 1e y -i -_-
r=l

IV-(57)

(e.g. J (_) = 124.4)
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IV-D Calculation of Electron-Phonon DamDinq Coefficient

The damping coefficient which is contributed by the

electron-phonon processes or the electron-phonon collision

frequency as it is often called_ can be obtained in a

straightforward way when we compare the expression for <W}

obtained in Section IV-C with the corresponding, well

known high frequency dispersion formula which is obtained

by solving Drude°s equation of motion for a free conduction

electron.

It is well known that the power expenditure (W} for

a free electron system is related to the optical conduc-

tivity _(e) by the relation

n (W> IV-(58)
2 e

where {W} is the power expenditure due to one electron

E a

per unit time and 2 is the energy density of the

electromagnetic field° Upon comparing Equation (58) with

the expression for (W> in Section IV-C0 we obtain the

relation

where R
ep

2

_ep (_) = 1 eo i_!_4_ _a Rep _5 Z(_a)

is a constant independent of temperature and

frequency° It is determined by the properties of the

lattice, and

IV-(59)

_Irthttr _l._Little,_ttr.
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= <4 nee _½_o _ m* IV- (60)

where mo is the frea11_nrv _h_r_*_e*_ ,_ *_ mlm_4-_,_

plasma oscillation, e o is generally outside the high

frequency limit of the free-electron dispersion spectrum.

At ordinary temperatures, most of the m-dependence

in Equation (59) appears through e "_ in the denominator as

in the case with the high-frequency conductivity of Drude.

Z(_,G) represents a relatively small variation for changes

O

in _. According to Equation (50), we have Z(_,_)_ J5 (_)

when _ = 0. The last three factors in Equation (59) re-

produce the well known GrGneisen formula. It also repro-

duces the d.c. damping coefficient derived by Wilson (1936)

when we identify our g and N with Wilson's C and A -i in the
P

expression for Rep given by

Rep = 2

_2 Np_9_ IV- (61)

__MKG

Thus, by making use of the relation,

= _ 1 IV- (62)
bep (_' _ ) J5 (=') _ o

it is natural for us to identify the last three factors

in Equation (59) as a damping coefficient Fep(_,_) similar

to its d.c equivalent po• ¢
ep
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o l ao(_)
rep(_) = Rep u_ IV-(63)

such that

Fep(_,_) = Pep° _) be p(_,_) IV- (64)

and

Fep (_,a) _ Fep (a)
_--_o

IV-(65)

In this respect, b (_,_) shall be named the quan-
ep

tum correction factor such that

o

AFep = Fep(bep-l) > 0
IV-(66)

represents the correction for e > O.

For the sake of convenience in future applications,

we write u_w..... b
ep

t,, N%
_,_j explicitly;

I {e_" l)Z J4(_,_)bep(_,_) = [jo(_) ]-z e_sln_ _ J5(_,_)" _ (e__l)

(e_- I)2 K4(_,_)I- 2_ (e2_.l)
IV-(67)

The optical conductivity _(_) in the form mf Equation

(59) applies only at we>> Pep" A more general form is ob-

tained when (_2+ Fep2 ) is substituted for _a in the denomi-

nator to make it consistent with the d.c. properties. We

thus have

_[rthur _._Little,_ttr.
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_eP(_'_) = --4VI POep bep(_'_)_-_-_ \_o/ ep
IV- (68)

which gives us the familiar expression for the d.c. conduc-

tivity,

1 Woe neee 1

_ep (a) = 4v Pe_qp _) - = m* F_p(a)
IV-(69)

when _ is equated to zero.

A quantity which has essentially the same physical

significance as the present b (_,_) has also been obtained
ep

by Gurzhi (1958), and is given by

2 1 f v4 2_ + v-_ v_u IV- (70)_(B,_) = _ _ dv eV_l eV___ 1 eV+__l

0

=i when _ << 5<<1. However, Gurzhi's formula fails to

reproduce the correct temperature dependence for d.c.

resistivity and hence for heat capacity in the limit

_ 0 for arbitrary values of 5. It agrees identically

with the result of the present theory when _ >>5.

Gr0neisen's formula for resistivity is compared with a

heat capacity curve in Figure 2, and a good agreement is

clearly shown.

A correct theory must be able to reproduce the time-

tested classical formulae, be they d.c. properties or

optical properties in the classical limit, and the correction
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factor, such as bep in the present theory, must approach

unity identically when _ _0.

IV-E Corrections Due to Electron-Electron Collisions

and Impurity Scatterlnq

Contributions to infrared absorption by the processes

of electron-electron collisions and impurity scattering

have been investigated recently by various authors. Some

of the new developments are to be found in the works of

the Russian authors_ Silin (1958), Pitaevskii (1958) and

Gurzhi (1959). Their calculations are based on Landau's

theory of Fermi liquids[* :I? _/i:- A metal which is commonly

considered to be free of impurities may actually contain

-4
impurities in the order of l0 or less. For such a metal,

the impurity contributions can be safely neglected except

at very low temperatures. It is well known that even a

small impurity content makes an important contribution to

the doC. resistivity at very low temperatures through the

"Restwiderstand" of Mathiessen. As for the impurity contri-

butions to various infrared dispersion properties, the

investigations in a following chapter reveal that, even at

very low temperatures, the impurity contributions can be

negligible compared with the contributions by Holstein's

mechanism of bulk electron-phonon processes. This is in

contrast to common expectations based on our observations

of d.c. properties. It results from the important feature

_rthur _._ittle,_nr.
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of the present theory that the frequency-dependent damping

coefficient Pep(_,_) retains a large value even at very low

temperatures when _ >> _. On the other handl for ane which

does not satisfy _ >> 5, Pep' at 0°K, decreases rapidly with

increase in wavelength, and thus the impurity and electron-

electron collisions become important.

&imilar conclusions are reached for the electron-

electron processes. It will be shown that the electron-

electron collisions are insignificant throughout the free

electron spectrum, not only at ordinary temperatures, but

also at very low temperatures for many metals. Theoretic-

ally, the electron-electron processes make more contributions

at higher frequencies and at lower temperatures. Except for

transition metals and some multivalent metals, the correction

amounts to a small fraction of the contribution by electron-

phonon processes in the high frequency region of the free

electron spectrum.

Thus, the above conclusions on the significance of the

two processes are not in exact agreement with the suggestions

by Silin (1958), Pitaevskii (1958), and Gurzhi (1959). They

suggest that these two processes may be the only predominant

contributions for most cases at low temperatures and in the

near infrared, and may be important at room temperature as

well for some metals.
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For our investigations on the relative magnitudes of

the contributions by the three processes, we shall use

Gurzhi's formula for the electron-electron collision

frequency

Pee(_,a) = p oee (a) bee (_)

bee(_) = 1 + (____)2

 v-(71)

IV-(72)

o
r
ee

(5) is the d.c. damping coefficient and is well known

to be proportional to _ _ e.

We may write it in the form,

i__
Fee(n) = Ree a2 IV-(73)

R
ee

o
being a constant having the same dimension as F

ee

The frequency-dependent factor given by Equation (72)

may be considered as a quantum correction factor in the

same sense that b (_,a) has been treated as the quantum
ep

correction factor for the electron-phonon collision

frequency.

As for the impurity damping, or the electron-impurity

scattering frequency as it is often called, it is sufficient

to remember that it constitutes a constant, additive quan-

o
tity PM to the over-all damping coefficient P(_,a), and

is independent of both frequency and temperature (or nearly

_[rthur _l._little,_nr.
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so). Thus, the over-all damping coefficient, wi_h all of

its quantum corrections taken into account, now takes the

form_

O

F(_,a) = Fep(_,_ ) + ree(_,a ) + rM

= r°(a)b (_, 5)

IV-(74)

F ° (_)b +F ° b + FM °
ep ep ee ee

b(_0G) = po + po + o IV-(75)
ep ee F_

This is to be used in various dispersion relations

where the damping coefficient appears. For the reasons

that have been explained in most cases it will be satis-

factory to consider only the electron-phonon term F (_,_).
ep

For example, Fep alone yields values of low temperature

absorptivity of copper and silver at 4.2eK and k _ i_ 1.5_

in excellent agreement with the observed values (up to

2%)° On the other hand, it is expected that F (_,G)
ep

will not be sufficient to explain the observed properties

of those transition and multivalent metals in which the

interband transitions involve a non-zero momentum transfer.

Those scattering processes which involve a momentum trans-

fer Iki- kll smaller than a certain non-zero minimum do

not lead to interband transitions.
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Finally, it may be noted that the significance of the

electron-electron collision term Fe_ is directly related

to the presence of the Umklapp processes. In fact, it has

been pointed out (Gurzhi, 1959) that the electron-electron

collision term vanishes if the Umklapp process is not

present. The relative importance of the Umklapp processes

at low temperatures, as compared with the usual phonon

meidated processes may be understood in the following

manner. Consider that the average momentum transfer in

processes decreases like_ (+_ and theelectron-phonon

density of phonons also decreases rapidly with decrease

in the average momentum transfer. The result of these is

the rapid decrease of resistivity, _T s, as T is decreased

to 0°K, while the electron-electron collisions, activated

by the Umklapp processes, have the well known_ Te-dependence

in resistivity. This should, therefore, be even more true

in those transition and other multivalent metals in which

the interband transitions are very important. A non-zero

lower limit in momentum transfer is present for such

transitions.

On the other hand, except for the latter special cases,

the above statement is not necessarily valid in that range

of the optical or infrared spectrum where the quantum cor-

rection factor for electron-phonon processes increases

sufficiently fast with decrease in temperature to compensate

_Irthttr _3Little,_ttr.
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for decrease in the d.c. quantity F o
ep

For instance, for

metals, be they monovalent, multivalent, or transition

metals, which involve......nn .._..-___,_,_v lower _,,_I_-_ _**_-momentum

transfer, the quantum correction shows the temperature-

1

dependence to be _ T---_ while Fep
(5) decreases as _ T s when

>> K8 >> KT, thus compensating each other exactly•

This is an important consequence of the present theory.

IV-F Calculation of ¢(_,_)

In Section IV-D_ we have taken _(_,_) in the form,

_o e

4_ _ +r =
IV-(68)

where F2 in the denominator comes from Drude's classical

equation of motion for free electrons with po replaced by

F(_,_). Upon solving the same equation, the expression

for _(_) is obtained in the form_

I-E _o _ 1

4_ 4_ _ + r_
IV-(76)

where the denominator has an additional frequency-dependence,

besides _e coming from b(_) in F(_).

Unfortunately, unlike the classical Drude equation,

Equation (76) is inconsistent with the Kramers-Kronig

relation,



-93-

I-¢ 2 /_ ='"7-
0

a(_')a_, xv- (77)

We shall calculate ((_,u) from Equation (77) for

both cases where (i) F (_,u) is the only important term
ep

o need be considered. In any case,and (ii) Pee(_,_) and PM

an exact solution to the integral is difficult due to the

complicated structure of _-dependence in b (_,6), and a
ep

suitable approximation method has to be used.

When a(_) contains only Fep, we have

where x =

i.n _--. m

4_

0

Pep bep d_'

(_,e+ o 2 2 (_,_._)
(Pep) bep)

+oo

i f
= . 4.rrs

_GO

bp() "-e x ax

(X2+ [bep(x) ]2) (x2.y2)

IV- (78)

- and y = , and where we have used

bep(_,a) = bep(-_,a)
IV- (79)

In order to investigate the property of (i-¢) in the two

extreme limits,_S>> _? )s and _0, we use the relation
ep

_[rthur _l._Little,_.n
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(xe+ b _ (x e- y 2) - (y2+ b e) L xe+ be

and we have

4v 4_ (rep) _ (ye+ b e) (xS+ b 2)
m

f b x,dx]- (xe_ ye)(y_+ b e)
--00

iv-(80)

where the subscript ep has been dropped for convenience,

and ba's appearing in the integrand are all functions of x

and not of y.

Before attempting to solve Equation (80), it may be

remembered that b (x) is a very slowly varying function
ep

of x throughout the entire spectral range except when the

temperature is such as to give 1 << _ << _ in the very far

infrared, and that bep(_0_) is_O(1), being always greater

than unity for _ >0.

In the limit of _ >>6, Equation (80) now becomes

I-_ mo s -ep8e IV- (81)

4v 4v

where
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_ep = _ (x2 +,b 2) _o _

In obtaining Equation (82), it was assumed that

b(x) _ b(-x) and that b(x) does not have a singularity

in the complex x-plane.

We notice in Equation (82) that, when _(_) satisfies

the sum role

2

_o _o
-_- a(_)_ = 4_

IV- (83)

we simply have 5 _ = i.
ep

In the limit of _ << i, we obtain from Equation (80),

a 5_

4V 4V (rep) e _ s

IV- (84)

where

'(s..x.<=>/ =.<x,)
The presence of _ in the integrands implies that,

in solving the integrals by a contour in complex x-

space, the zeros of b(x) must be taken as the zeros of

the integrands and not as singularities of the integrands,

for all _ _ 0. In this case, it is easily shown that the
A

second integral vanishes, and we have

_rthur _l._kittle,_.r.



-96-

g2 - V __ (Xe+ be) (be+ _ ) _ _ 0

xv-(85)

The integrand is taken to vanish at the zeros of b(x).

Upon comparing Equations (81) and (84), we construct

one possible form of (l-c), namely

I-E = _ _¢p xv-(86)

where 5 and _ may or may not depend on m, and if 5
ep ep

is independent of m, we simply have

5 =5 _ =i
ep ep

Taking 5 and _e to be independent of m is essentially
ep

equivalent to evaluating the integral (28) by replacing

b e of denominator by a parameter he. In fact, such an

approximation is reasonably well justified for b (x) is
ep

a very slowly varying function of _ for all -_< x < +_,

except for the case of i_< _ << _ (which can occur at very

low temperature and in the very far infrared limit). The

parameter which best approximates the integrand may be

found by a successive approximation, solving the identity

equation
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_(a) = bep(i _o ,a)

O

IV- (87)

where _(a) is independent of _.

By such an approximation, Equation (78) is readily

solved, and we obtain

2

i-¢ _o 1

4V = 4-_- _+ Cpe_)2 8s IV-(88)

which applies to all temperatures and _'s except for the case

of 1 << _ <<_ in which b can be a very rapidly vary-
ep

ing function of _ although the over-all magnitude of

(P:pbep) is generally very small.

It is seen that Equation (88) is identical with

Equation (86) when we put 8 = 1 and take _ as a frequency-
ep

independent parameter. Further, the sum rule Equation (83)

is automatically satisfied.

The said statement that b (x) has zeros but no sing-
ep

ularities in the complex x- or _-plane can be understood

upon examining the complete expression of b (_,_) in the
ep

complex _-plane. From Section IV-C, we have the following

expression for b (_) ;
ep

b(5) = bI(_) + i bII(_)

_Irthttr _._Little,_ttr.



-98-

b I (_) = %
COS 2_a-l) +_ea_1 sin

+ jII (_)
[Pc (eePlc°s2pe -i)- Pm eSPl sin 2p_!,

[Pl (e2Plcos2pa "1) _Pee ePlsin 2P2 ] J

-< (e_m cos_. -I)" -e "P" sin_2) <JI (_) +2KI (_)

2e pl s in_e (e _icos _e-i )

+ [(e plcos_2-1)e-e e_sinpe]

x J4 (_) + 2K4 (_)
iv-(89)

where we have put

jn(_,_ ) = jI(_)n + i jII(_)n

Kn(P'_) = KI(_)n + i KII(_)n
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JnT( ) = jn (- =

O(

f yndy [-(eY+e "y) e_lcos_2-e2_lcos2_2-1 ]
D(;,y)

o

o_

jnlI(_) -- --jnII(_) = fyndy

o

[ e 2_1 s in2p_- (eY+e'Y) e pl sing 2 ]

D(_,y)

C_
2_t

[(eY+e'Y)e_Icos_2-e icos _2-I]

(eY-1) D(gsy)

II
_I(_)= Kn (__)=

(%

f yndy

0

[e2_I s In2g2 -(eY+e =Y) epl sin_2 ]

(eY- 1) D(_,y)

IV-(90)

where

D(_,y) = [(eY-e_icos P2) 2+e_pl sins P2]

X [(ePlcos Ps'- e'Y) 2+ e2Plsineps]

Similarly, the expression for bII(_) is obtained upon

replacing (J_, K_) and (jII, K_I) by (J_I_K_I) and (-J_,+K_),

respectively.

A detailed study of the Expressions (89) and (90)

shows that b(_) has no singularity, but has aD infinite

number of zeros on the real axis of the p-plane at

_rthur _._ittIe, _3_tc.
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n

= +i -_--_

n = 1,2,3, ....

This implies that in obtaining the solution (88),

we must make sure that only those values of _ which meet

the condition

_o_, _ n

: n = 1,2,3,4,

IV-(91)

are considered. We further notice, in Equation (87) which

defines _, that any 6 which is found from Equation (87)

satisfies the condition (91) automatically. The solution

to Equation (87) is obtained upon putting _I = 0 and

be = _o_ into Equations (89) and (90). We thus have

_(_) = bep(i_oB)

l+sina(_o_) [ tan(#oB) jI(P'o_)

+ ( og)
cos (_o_) + 2

IV- (92)

where we have used the relation

= -2 tan(_o8 ) IV- (93)
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and

Jn I (i_o8) = / yndy[ (eY-eos_o_)(cOS_o_-e'Y)+ sin_(_oS) ]
' 0 [(eY'cos_t0g)2+ sfn2_t0gl[cos_t0g'e'Y)2+ sln2(_0g) ]

o_

I
yndy[--- ]

K n =

o (eY'l) [''" ][''"]

IV- (94)

Evaluations of 8(_) in the two limiting cases, _ >>i and

<< i, are simplified considerably.

In the llmit_ >> 1, we have

n (m+2) n+1 cos (_o0)
m=l

oo m-I

K I~"= n'cos (_og) 1 + 3n-'6/i"+ (m+e_ n+z - s cos

m=e s i

IV-(95)

For n=4 and n=5, it is safe to take only the first terms

of Equation (95), and we have

ji.,120 cos(_oS) ; jI,_24 coS(_o_)

3-F-cos IV-(96)

o
Js. 'x,124

On the other hand, in the limit _ << i, it easily follows

that

_rthur _131ittle, _3.r.
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n+J.
cos(_o_)

8 (_t+l) s in 4 _

_ = (_- cos(_o_)8n IV- (97)

(m = 0,1,2, ...)

jo ___. %a 4

Thus, the identity Equation (92) is reduced to the follow-

ing two corresponding to the limits, a >>i and a<< i,

respectively.

(i+ sin e _o_ )[sin(_o_ )+ _ (l-cOS_o_)] IV-(98)

(_o_)2 (1+ sin2_o_)
_o 4 sin 4

IV-(99)

These equations are in a numerically solvable form

O

provided that we know the value of _o and hence ?ep(_).

The solutions to these equations may be obtained with the

help of our formula for F oep(a) o According to Equation (63),

it is seen that

I

I_o_, _-_4-- << I

in the limit a >>l_ and the only possible solution to
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Equation (98) exists when (_o8)<< i.

_ i : _>>i

Thus we find

iV-(lO0)

(63) tells us that P
_: ep

On the other hand, if _ <<l (high temperature), Equation

T and _o_c°nstant such that

_o_0(i)

According to Equation (85)0 b(x) and _ are _ 0(i).

We thus find, from Equation (99)_

_ i+ sin 2(_o_) : 6<<1

4si n2 (_)

iv-(101)

where (_o8)_ 0(1) < _ .

According to the result shown in Equation (100), the

denominator in the dispersion formula for (i-¢) is to be

taken as

_ + (Fe°p)2

when _>>i, while that of _(e) is to be taken as

1

_ + (r_)2(_ _

with _ > 1.

In the forthcoming applications of the theory to

practical cases, we shall in general take _ as a temperature-

dependent parameter to be determined by fitting theoretical

equations to experimental curves, while bep is calculated

theoretically.

_[rthur _131ittljJ.r.
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IV-_ Calculation of _(_,_) with the Electron-Electron

Collisions and Impurity Effects taken into Account

We have thus far considered only that part of dis-

persion which is contributed by the bulk electron-phonon

processes. For a more general calculation of ¢(_,_), we

must use the formula (74) and (75) in the Kramers-Kronig

relation. Aside from this, the calculational procedure is

similar to that of Section IV-E.

For the sake of convenience, we define the following

notations:

_°(0_) = <Fep_ep + F°+ee F_ ; _o= _Fe°pbep+ Fee+O F_>

iv-(102)

ee Qee[1+2- ee]}

Then, the dispersion denominator in _(_,G) can be put into

the form,

(_2+F _) =
ee

iv-(103)

and we have



-io5-

_ee + co
o _ee

(_2+ _+_)(_2 + ._._)
iv-(io4)

where _'s without bars represent quantities of Equation

(102) with 8ep replaced by bep(_,u), where 8ep is a

temperature-dependent but frequency-independent parameter

similar to 8 assumed in Section IV-E. A close examination

of __+ in Equation (102) shows that

6+ , fl_+ > 0

In solving the Kramers-Kronig relation, we shall again

use Bep in place of bep in the denominators. This approxi-

mation is just as much valid as the same approximation that

was adopted in Section IV-E. Then we have

1-¢ U_oS 2 / c1_o'"4_ 4V ee

_02 2 / d_ v- -- gee
4V

-w

_w2

nee

(e,e+ n+2) (o_,_+n.2) (_,2. _,)

no(_')+_e_e >

_V-(lO5)

This may be solved by taking the contour integral in

the upper half of the complex _'-plane enclosing the poles

on the [i_-axis at _'= +i_+ and +i_., the semi-circular

_l:thur _3!ittle,_.t _.



-Io6-

arc extending from _'= +_ to +i _ and then to -_, and the

contour being indented above the real points at _'=-+ _.

We thus obtain

2 2
I-¢ _o _ee

×

no [i_- ]

IV- (i06)

In general, we have

_o o_
<<i ;

ee ee

<<I
IV-(107)

for all _ in the free electron region of spectrum, and

thus

_ee

ee

so that Equation (106) can be reduced to the form,

i-¢ _o I no (16o)
--'_ - ; =I

4_" 4_" o9 + %2 6o

iv-(108)
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_(_,_) -
4_

IV-(104)

where _'s without bars represent quantities of Equation

(102) with 8ep replaced by bep(_,_), where 8ep is a

temperature-dependent but frequency-independent parameter

similar to 8 assumed in Section IV-E. A close examination

of __+ in Equation (102) shows that

_+ , g_+ > 0

In solving the Kramers-Kronig relation, we shall again

use %p in place of bep in the denominators. This approxi-

mation is just as much valid as the same approximation that

was adopted in Section IV-E. Then we have

l -E mom /
: - _ 9 2 _,

4_" 4W" ee

CUo2 2 / d_'= " -- _ee
4V

-m

Go,o,,--)
llee

(e,_+n+2)(e,_+n2) (_,2.ee)

no (_')+ _e-_-e2>

zv-(105)

This may be solved by taking the contour integral in

the upper half of the complex _'-plane enclosing the poles

on the [in-axis at _'= +i_+ and +i__, the semi-circular
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arc extending from _'= +_ to +i _ and then to -% and the

contour being indented above the real points at _'= ± _.

We thus obtain

2 2
I-¢ mo _ee

X IV- (i06)

In general, we have

_0 O_

<<i ;
ee ee

<<I
IV- (i07)

for all _ in the free electron region of spectrum, and

thus

<_een± _ no

ee

so that Equation (106) can be reduced to the form,

I-¢ _o i _o(i_o)
--'_ . ; =1

4_ 4_ _ + %2 _o
iv-(108)
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where 00 (i_ o) is real since bep(iX) = bep(-ix)

meter _ep is found from the identity equation,

= bep(i _)

ep Fee +

and the para-

IV-(109)

which becomes identical to Equation (92) in Section IV-F

when F o and FM°are small compared with the electron-ee

phonon contribution° We found previously that, at low

temperatures (_ >> l) 0 we have

o _ 1
F ep << 1 ; -_ep

while F ° (_) decreases relatively slowly, like _T 2, as T
ee

O

is decreased and FM is the constant, "Restwiderstand" term,

so that, in this limit,

_ _ff(r ° + r_) = toee
xV-(ll0)

independent of _. Therefore, fortunately enough, we need

not be concerned with evaluating 8 at all at low temperatures

and (l-E) is simply given by

i- ¢ _o 2 1 : _ >> 1 IV-(111)
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0

On the other hand, at not too low temperatures, Fee

o 8so that the expres-
and F_are both much smaller than Pep

c_n _ (l-c) i_ n_ly the s___..e as that obtained in

Section IV-F.

Similarly, the properties indicated in Equation (107)

enable us to write down _ in a reduced form,

_ _Z nQ{_,_) +

4v us +[Do(_,_ ) ]_ _oDee

IV-(ll2)

which is to be applied whenever Equation (108) is applicable.

It must be remembered that the electron-phonon part of

_o(_,_) in Equation (112) is not necessarily smaller than

(Pe_+ F_) because bep(_,_), instead of _, is multiplied to

p o(_) in D o . In fact, it is found that the rapid decrease
ep

of F o (i.e. like _T s) with decrease in T is exactly compen-
ep

1

sated by the _ T5 -dependence of bep(_) in certain parts

of the free electron spectrum°
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Chapter V

Absorptivity, Reflectivity, Optical Size of

Condution Electrons, and Other Properties of Metals

V-A Basic Formulae from Chapter IV

The formulae for optical conductivity a(_) and dielectric

constant _(_) were obtained in the preceding chapter, first by

considering the contribution of only the electron-phonon pro-

cesses, and second, for the more general case where electron-

electron collisions and impurity scattering also need to be

taken into account.

In the applications that follow, we shall use the general

formulae obtained for the second case.

(_> neglected, the expressionWhen the quantity _eee
is not

for a(_) and e(_) take the form

_(_) = _%1 Oo
4_ _" ea(_) v- (i)

_°e (_) V-(2)
[1-E(_)]= 0% Gc

where

_ = _+ no2

Ga(_) =
1 +

1

nonce

_Irthur _131ittle,_.r.



(_) =

go = Fe°!o(5) bep (_130_)+ Fee°(5) + I"2

_0 = Fe°p(5) 6ep (5) + F°ee(5) + FMO

_e multiplicative factors, _ and G¢, are corrections

due to electron-electron collisions and, in general, are of

the order of unity. _e entire temperature-dependence in

Equations (i) and (2) appears only throu_go and _o. Only

_o shows frequency dependence throu_ the term b (_,_).
ep

_e formulae (i) and (2) are more general than Equations

IV-(112) and IV-(108) since the latter two neglect ( _ _e
' \ _ee /

which is small compared to unity. In general, _ee

small compared to unity throu_out the entire free-electon

spectr_ (i.e., k _ 0.5 _ 1.0_) for all temperatures, so that

Gc (_) _ 1

G=(_) _ <I +

In order to justify this statement, let us compute / \k e-_e J e

for a metal which shows a relatively large contribution of

electron-electron collisions, and see at what wavelength the

relations of (4) are not valid. For this purpose, we write

p o (5) as
ee

v-(3)

V-(4)
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_i_l
Fee(_) : Ree _"

v-(5)

where R is independent of both T and _.
ee

Then_ we have

_e) s 3.84 × i0 "Is
V-(6)

For most metals, the values of R range from
ee

_10 I° sec "I to _i0 Im sec "I while 8 is of the order of

_i0 e (°K). Therefore, for 8 = 300°K and Ree = i0 Is sec-m,

the wavelength which gives <- m2 __e _0.i (_i0% correction)

is found as 0.2_0.3_, which is already outside the free

electron region of the spectrum. On the other hand,

< _o_ee_ ) is not necessarily small, since we have <_)>>i

in the near infrared.

In order to predict values of various dispersion

properties such as the optical constants, absorptivity

and reflectivity, etc., at different temperature by know-

ing the values of these quantities at one temperature, it

is sufficient to specify the temperature-dependence of Qo

and £o in addition to the values of the constant parameters

entering in 9o, _o and Oee. At not too low temperatures,

_o and 60 reduce to

_trthur _._Little,_rtr.
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where _ep(a) and bep(_,a) are given by Equations IV-(92)

and IV- (67) respectively, and Pe;(5) is given by

o (5) = R 1 j5o(_)
Pep ep _ 5

In particular, for_ = k KT />>_= , we have

V-(7)

[ i]i js°(O0 +%(_s + C_ e((_). Ibep(_,O0 _ _ep(O0 = 5J50(00
v-(8)

This relation applies in the spectral range to k _ I0_.

At very low temperatures (_ >> 1), we may use

_o _ _po\ee(_)+ PM> ; T > 0

po ; T= 0
M

_o '_ _o P" << O_ V-(9)

_ o
\ i0 PM + e _>>_

where only r o retains a temperature-dependence of _ T 2.
ee

As the numerical computations in a later chapter will

show, the residual phonon term (_) generally has a

value which is comparable with the room temperature value

of (Pe;bep) and hence is much larger than P_ and Fe_.

This is clearly in contrast to what might be expected from

the classical theory and is also in contrast to the mug-

gestion by Pitaevskii (1958), Silin (1958) and Gurzhi (1959)
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that, at low temperatures, only the electron-electron col-

lisions and impurity scattering may play a dominant role.

On the other hand, it provides strong support for Holstein's

suggestion (Holstein 1954) that the bulk electron-phonon

processes may make a large contribution to absorptivity

even at a very low temperature.

The quantity, %e' entering in the correction factor

Go(_) is independent of both frequency and temperature. For

convenience in practical applications, we write G o of

Equation (4) into the form

( R )G a(_) = 1 + ee 5.29 x 10 +6
So 12 8_

:kin

v-(10)

it is easily seen that the .._1.,_v=_of c_o i.,%,_,_=m=_,Q n9......+h_

order of unity even at very low temperatures, since

according to Equation (9),

Ree 5.29 X 10+6
(Go-D t0 --

Rep le 8 a ; _ >>

Ree 5°29 X 10+6

, ; T = O°Kee

_<<o_

The first equation is not large since R << R
ee ep

second is not large since 12 is itself large.

and the

V-(ll)

_[rthur _13£ittle._tr.
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In the following part of this chapter, we shall compute

various dispersion properties for different spectral ranges

applicable at any temperature. Discussion of these proper-

ties for different ranges of temperature is emitted since

the preceding discussions on the temperature-dependence of

0 and G_ are sufficient to specify the temperature-_o u o

dependence of other dispersion properties.

In what follows, the free-electron spectrum is divided

into four segments: [i] w2 << _ e << w2; [ii] _2 _ _2 _2 << we;0 0 O; 0 0

[iii] _e_ e << we << e2; [iv] ee _ ca, where w ois the fre-
0 _ 0 0 0

quency characteristic of the electron plasma such that e > 0

for w >_o and e< 0 (free electron region) for _ < w o.

V-B Optical Constants, n and k

The fundamental relations between the optical constants

(n,k) and the dispersion properties (_,e) were derived from

Maxwell's theory of electromagnetic fields in Chapter II.

They are:

e(_) : (n 2- k 2)

(w) = nk co
2_

v-(z2)

where (n,k) constitute the real and imaginary parts of the

complex index of refraction N(w);

N(m) : (n - ik)
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that, at low temperatures, only the electron-electron col-

lisions and impurity scattering may play a dominant role.

On the other hand, it provides strong support for Holstein's

suggestion (Holstein 1954) that the bulk electron-phonon

processes may make a large contribution to absorptivity

even at a very low temperature.

The quantity, %e' entering in the correction factor

G_(_) is independent of both frequency and temperature. For

convenience in practical applications, we write Gu of

Equation (4) into the form

RG_ (_) = 1 + e___ee
_o

: kin

5.291a 82X i0+6 _ V-(10)

It is easily seen that the value of Ga (_) remains of the

order of unity even at ver_ low temperatures, since

according to Equation (9),

Ree 5.29 X I0+e

(Gg-l) _ i0 --Rep le 0a ; _ >> _

V-(ll)

Ree 5.29 X 10+6

. ; T _ 0°Kk_ 8m

_<<_

The first equation is not large since R << R
ee ep

second is not large since k2 is itself large.

and the

_[rthttr _13Little,_ttn
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In the following part of this chapter, we shall compute

various dispersion properties for different spectral ranges

applicable at any temperature. Discussion of these proper-

the preceding discussions on the temperature-dependence of

_ and G_ are sufficient to specify the temperature-_0 _ 0

dependence of other dispersion properties.

In what follows, the free-electron spectrum is divided

into four segments: [i] _2 << g2_2 << _2; [ii] _2_ g2 _2 << _2;
0 "_ 0 0 O; 0 0

[iii] _2_ 2 <<_a <<_2; [iv] _2 <_o2 , where _oiS the fre-O; 0 0

quency characteristic of the electron plasma such that e > 0

for e >_o and e< 0 (free electron region) for _ < _o"

V-B Optical Constants, n and k

The fundamental relations between the optical constants

(n,k) and the dispersion properties (G,e) were derived from

Maxwell's theory of electromagnetic fields in Chapter II.

They are:

e(e) = (n 2- k e)

G(_ ) = nk
2_

V-(12)

where (n,k) constitute the real and imaginary parts of the

complex index of refraction N(_);

N(_) = (n - ik)
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Upon inverting the relations of Equation (12), we ob-

tain (n,k) in terms of (_,_) as follows;

n

k

V-(13)

where 8(_) has the meaning,

[+ 1 c > 0 (_o<m)
e(_) L

- 1 c < 0 (COo> _)

and where g and G are to be substituted from Equations (1)

and (2).

Substitution of Equations (i) and (2) into Equation

(13) yields the f_]1owing expressions of n and k applicable

in various spectral ranges where _ < _o;

[i] m e << _o _, SoB << eo 2

1 (DO

; [ (bep-l' °
i PepGd.c.

= V p °
V-(14)

where

_ __ tl
d. c. 4v p0

nee2 1

- m*

F° = ( F°ep +F°ep +F° )M

1_o

v-(z5)

,_Irthur _._Little,_ttr.
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0

At not too low temperatures, we have F
ep

J ' 'In _ k _ ed" ¢" b
v ep

F ° and

V-(16)

At very low temperatures,

ro o o
Pee + rM

independent of _, and

oPep ,_ Rep X 124 V-(17)

[il] _2=no 2, _o2 <<_o 2

n

k = _ + _ _i G +i

V-(18)

[iii] nO, _0_ << o_z << O)o:"

n _ _

e_

_o _o
: =(k 2 + constant)

: _ k

V-(19)
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,%, -%,

where fie and Go. represent _o and Go-with b
ep

by _ep(a) given by Equation (8).

[iv]_ _ _

(_,_) replaced

V-(20)

In particular, when m_ m o, we have

i (oo0o n_ k_ _ eo <<i
v-(21)

¢_ 0

L
47;"

Equations (14)_ (21), for n and k are plotted

qualitatively in Figure 4 as functions of k.

.qrthttr _l._littIe,_rtr.
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V-C Absorptivity and Reflectivity

In general, absorption in the free-electron region of

the optical spectrum is attributed to two separate mechanisms;

bulk process and the anomalous skin effect. The bulk absorp-

tion includes contributions by the electron-phonon processes

that was suggested by Holstein (1954) and is the heart of

the present theory, as well as by the usual electron-electron

collisions and impurity scattering. The theory of anomalous

skin effects was first offered by Reuter and Sondheimer (1948)

and was later elaborated by Dingle (1952, 1953) and Gordon and

Sondheimer (1953). Theories which formulate dispersion with

consideration of all three, anomalous skin effects, electron-

electron collisions and impurity scattering simultaneously,

have been developed by Pitaevskii (1958).

Further attempts to formulate the bulk electron-phonon

processes have been made and a formula for infrared absorption

has been obtained by Gurzhl (1958) by solving the transport

equations for conduction electrons.

The infrared absorptivity obtained by Gurzhi applies

mostly in the near infrared, and agrees exactly with the

result of the present theory in the same limit of the free-

electron spectrum, although the calculational methods adopted '

are different. The present theory applies to virtually the

entire free-electron spectrum for all temperatures.



-ii9-

Denoting the bulk absorptivity, skin absorptivity, and

total absorptivity as A B, A s , and A, respectively, we have

A = A B + A s

The total reflectivity R is simply,

V-(22)

(I-A) . The skin

part of absorptivity is important only at very low tempera-

tures, and will be neglected at all other temperatures. The

theory of anomalous skin effects was proposed originally in

order to explain the low temperature absorption in metals.

That skin effects alone cannot explain the observed low

temperature absorption has been made clear in a number of

papers, and it was to bridge this gap between theory and

experiment that Holstein (1954) offered his mechanism of

bulk electron-phonon processes. The results of the present

theory not only support Holstein's suggestion, but also show

that such a bulk mechanism, for many metals, is far more

important than the skin absorption even at very low temperatures.

It is well known that, when the anomalous skin effect

cannot be neglected, it is diffuse rather than specular

reflection of electrons at the metallic surface that contri-

butes to low temperature infrared absorption. Thus, we shall

use the well known formula,

A = 3 DF V-(23)
s 4 c

as the absorptivity due to the electrons scattered diffusely

_[¢thur _._ittie,_JTtr.
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at the surface, where b_F is the Fermi velocity of electrons.

We obtained expressions for the optical constants

(nok) in Equation IV-(13) as functions of the parameters

¢(_) and _(_). Therefore, in order to obtain absorptivity

or reflectivity as a function of (c,_), we shall make use

of the relation,

4n

AB = (n+l)S +k s

where (n0k) contain contributions from the bulk alone.

Thus we readily obtain the relation

V-(24)

V-(25)

Upon substitution Equations (i) and (2) into the

above, we obtain the following results for various spectral

ranges with _ <_o;

[i] w e << _o s, _o 2 << _ (Generalized Hagen-Rubens formula)

.... i'v i+ (bep-i)= 2_ _d.c. F °
V-(26)

where the same remarks apply to the correction factor to
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the right as in [i] of Section IV-B. This correction fac-

tor can be significantly larger than unity at low temperatures.

o Fo
At not too low temperatures, we have Fep= so that the

% Even at room temperature,
correction factor is simply bep.

this can introduce a correction in the order of i0 _ 20% if

.>
Equation (26) is exactly the Hagen-Rubens formula

when the correction factor is equated to unity. The original

Hagen-Rubens formula for reflectivity has been found to agree

well with observed values, and our formula for reflectivity,

+ F--_ (bep-l)R = 1 - 2 md.c"
V-(27)

is expected to improve the comparison with the experiment.

For this reason , we shall call Equations (26) and (27) the

"generalized Hagen-Rubens formula",

[ll] _s_ _o a, _o_ <<_o a (k< i0_ at T = 300aK)

[<.<°o°.o>.},+ _z G - I

V-(28)

_rthur _._!ittle,_tn
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[iii] _o m, _o a << We << Woe

A B Ge(w) -- _ _, _2 (rio G_)
\ " / ..... e-

V-(29)

where

_ _ _ w •

(noGo) = no +

o_ + FO+ +
ep ee

v-(30)

+ : T>> O°K
ep _ee

At very low temperatures and for _ >> a , Equation (29)

reduces to

R____ + 5.29 X 10+6
I0

Ree
le 82 V- (31)

/ : A in _

The skin term A of Equation (23) must be added to obtain
s

the total absorptivity. This formula will be used repeated-

ly in the future in specific applications, and it will be

shown that it gives values in excellent agreement with the

experiment. A very interesting feature of Equation (31) is

the absence of temperature dependence. Further, the domi-

nant term represented by (_> does not contain k-dependence.
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The values of R and R are in general of the same order of
ep ee

magnitude as pO and P o respectively, of room temperature
ep ee'

so that the quantities within (---) represent a large value

while, classically and from some existing quantum mechanical

theories, the electron-phonon term is expected to decrease

rapidly, like _T 5, when T is decreased to O°K.

Now, let us compare the magnitudes of the two terms

with the help of some typical numbers. Many metals have

R _ i01_ 1015 sec "1 while R is of the order of_lO 9
ep ee

1011 sec "I and, for an exceptionally large case,_lO1esec-I

Thus, for R = 1014 sec "I , R = 101°sec'_,8 = 300°K, and
ep ee

l= I_, we have

R

ep = 10z3
i0

sec

R
ee N

5.29 x i0 e ),2 8e =

-i

(0.06) x 1013sec -1

In this case, the electron-electron collisions intro-

duce a correction of about _ 6%, while, if we take R =
ee

lOlesec -I , the correction is as big as 60%. Thus, it is

clear that, while the electron-electron collision plays

a relatively small part even at very low temperatures for

many metals, it can be quite significant for some special

cases.

_[rthur _l._!ittIe,_tn
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0

A B

2 I + G_ _,2_ co2 - i

V-(31)

In particular, at ma_ woe, this is reduced to

_O

V-(32)

At such large frequencies, the second term in G_(_)

due to electron-electron collisions may become predominant,

especially for those metals which have large values of R ee"

The bulk absorptivity and reflectivity are plotted

qualitatively in Figure 5, where the significance of the

correction factor G_(_) is shown in the high-frequency

limit.
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V-D Temperature-Dependent Scattering Cross-Section, Optical

Size of Electrons, and the Virtual Mass of Liqht Quantum

From our formulae for temperature-dependent optical

constants (n0k) or (_,_), we can define the temperature-

dependent scattering amplitude, scattering cross-section per

electron, and hence the optical radius of the electron. By

scattering cross-section we mean the effective cross-section

of a conduction electron which the external electromagnetic

field sees for interaction, including both pure scattering

and absorption. In this sense, it may also be called "the

dispersion cross-section per electron". If such a cross-

section is denoted as _s(_0T) measured in cm s, the optical

radius of an electron, a s , is defined as

_ae= _

and is measured in cm.

The concept of "virtual mass of a photon" in metals

(and also in dielectric media as well) is a rather new one

and its definition is helpful in a qualitative discussion of

infrared dispersion in metals. A light quantum of frequency

_, when it enters a medium with index of refraction n > i,

behaves as a light quantum of frequency, <+_<_8 as if it

suddenly gained a nonzero mass m and that
P

v-(33)

_tl:tIlur _3_ittle,_rtn
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_2 = + K2c 2
P

This is a relation which is often used to obtain the

expression of n in dielectric crystals, and is not anything

particularly new. A quick glance at the relation reminds

us of the familiar expression for relativistic energy of a

particle in terms of kinetic and mass terms. Thus, we may

conveniently define the first term of Equation (34) as the

kinetic term and the second as the mass term, so that

V-(34)

- 1
= _0

mp c 2 n

Likewise, we may treat the mass term as a potential term

such that an increase in m and hence a decrease in the
P

kinetic term correspond to an increase in a potential of

some kind. In fact, the physical piture of some dispersion

properties, at least in the free-electron region, can be

better understood in terms of such an argument. For instance,

the increase of reflectivity of light by a metal with increase

in index of reflection may be explained in analogy with the

increase in backward scattering of a particle by an increased

positive potential step, and hence a smaller kinetic energy

in the new potential field. We are essentially applying our

knowledge of the elementary particle picture to optical

V-(35)
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dispersion in contrast to the usual practice of applying

optics to massed particles.

We shall now calculate various properties explained

above with the help of the relations of Chapter II. Upon

combining Equations (i) and (2) with the dispersion rela-

tions for n and k of Chapter II, we easily obtain the

following temperature-dependent expressions for the real

and imaginary parts of the scattering amplitudes, (ReF)

and (ImF);

Re' = r* (--_o) 2 _ I_-l+[ I+ (--_)2]'}%-J_ 1

ImF = ro (_o _s _ 1 + _l+<" _

V-(36)

where r* is the effective classical radius of electrons
o

and is related to the usual classical radius of electron

r as
o

r_ = m, ce = m* ro
V-(37)

where m is the rest mass of an electron.
o

The scattering cross-section _s and the optical radius

a are obtained from the usual relation,
s

4_c= _ras = ImO'S S (D
v-(38)

_[rthttr _l._LittIe,_rtr.



-128-

The mass of a photon m is computed from Equation (35)
P

by using the formulae for n(_) that were obtained in Chapter

IV-Bo Here again, we shall compute these quantities for various

segments of the free-electron spectrum when _ < _o" They are:

LL] _2 << _o 2, _o e << eo2;

ReF _ ImF_ W2 r° \_o 2_o J

/

s o \ _o e _o /

a s _

mp

V-(39)

V-(40)

V-(41)

where lo is the critical wavelength

We notice that m c e is nearly the entire photon ener-
P

gy_ meaning that, in this part of the spectrum, the photon

may seem nearly motionless to a Fermi electron of speed

=108(cm/sec), and hence there is a greater probabilityF

of encounter, on the average, between the photon of mass

m and the conduction electrons during the period of

_--_ (second).
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[ii] m2_02 _o2<<_02

+ \ _ _I Ca) - I V-(42)

ImF _ _r°* CUo_s + _ _i G + 1
V-(43)

V- (44)

V-(45)

m _< _

[iii] _o2, i}o2 <<ms <<ab 2

O< oy[ ]o ms G_ - i
V-(46)

ImF ._ 2 r*o (-_-o) V-(47)

as_ 4 r*k Oo
V- (48)

_Irthur _l._£ittle,_rtr.
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a _ 2 , io)%s _' (ro
V-(49)

m _ 2 1 -4 _
P c L \ _ZoG_ / J

v-(50)

It is seen that a and a are independent of frequency
s s

and temperature while we found previously that absorptivity

is independent of frequency in this part of the spectrum.

Formula (50) for m necessitates defining a frequency
p m

such that m = 0 at _ = _ given by
p m

we = -o_ > 0

m 2. __e e

Strictly speaking, relation (50) is valid only for 60

smaller than
m

This corresponds to the point where the

index of refraction is identically equal to unity and the

light quantum behaves as though the bulk of the metal is

not different from vacuum. Photoelectric processes which

may be important at such a frequency have been neglected,

v-(51)

[iv] _ <__2

, _ 2

_o _

v-(52)

>,[< , ]ImF" Zrok--_-- J kS_o , I+ + i V-(53)
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V-(54)

2314 r$ % _o
as _ +% A(D G_

(Do

v-(55)

where A(D= ((D._o).

When _ >>_o ,both a and a approach very small but
s s

constant values of the order, <%)and _ _fo _Bee

respectively, and vanish identically when there is no Um-

klapp process present. This is, of course, not strictly

true when we consider the contribution of bound electrons

which are important in this part of the spectrum.

The scattering cross-section _ is plotted against k
s

qualitatively in Figure 6. The k-dependence of m is also
P

shown. The general pattern in the k-dependence of _ and
-s

_ may be compared with those of absorptivity and

reflectivity, respectively, of Figure 5.



-Z32-

Chapter VI

Paramaqnetic and Ferromaqnetic Transition Metals

VI-A Introduction

The calculation presented in the preceding chapters

depend on the assumption that the energy surface is spherical.

This assumption has been shown to work well for a variety of

nontransition metals. However, for many multivalent and

transition metals which have been investigated from a theo-

retical point of view, the surface of the Fermi level cuts

through two or more Brillouin zones, and it does not resemble

the spherical shape we considered in Chapters IV and V.

In particulars the study of ferromagnetic and paramag-

netic transition elements represents a special problem from

a theoretical point of view, since the metallic properties of

these metals have a rather peculiar dependence on the place

of the element in the periodic table. These special proper-

ties are exhibited in the observed temperature dependences

of resistivity as well as of various thermodynamic properties.

Behavior of the ferromagnetic transition metals represents

an even more special case. Although these metals have been

studied rather extensively as to their d.c. electrical proper-

ties based on the quantum mechanical explanations, very little

work has been done on the optical and infrared dispersion
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properties. Some of the qualitative features of the optical

properties of transition metals and transition metal alloys

were presented by Mott (1936, 1935).

In the transition metals such as Pt, Pd, Ir and Ni,

the s-band and d-band overlap and the Fermi level falls in

this overlapping region. The most widely investigated metals

are the triad, Pt, Pd and Ni, which come before Cu, Ag and Au

in the periodic table, and are all face-centered cubic lattices.

In palladium, there is about 0.55-0.6 electron per atom in

5s states and the same number of holes in the 4d states. In

pure platinum, £here is about 0.55-0.6 electron in 6s states

and the same number of holes in 5d states. In nickel, there

is about 0.55-0.6 electron in 4s states and the same number

of holes in 3d states. The density of states p(E) of 4s and

3d states of nickel is schematically illustrated in Figure 33

and are compared with 4s and 3d states of copper. The large

value of energy density of d states compared with s states

is qualitatively indicated, and it will be shown that this

leads to important consequences.

Some of the important physical consequences of the

presence of positive holes in the d-band are: (a) the

ferromagnetism or high paramagnetism shown by these metals;

(b) the low electrical conductivity and anomalous behavior

of resistance both at high and low temperatures; (c) the

low reflection coefficient for long wavelengths; and
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(d) the high electronic specific heat. Although all the

above properties are mutually related, only the first three

will enter explicitly in calculations of optical and infra-

red dispersion properties. In the language of the optical

dispersion theory, the low reflectivity for long wavelengths

is the direct consequence of the low electrical conductivity.

This may be explained on the basis of the Hagen-Rubens formula

for reflectivity R that is applicable at long wavelengths,

R_ 1 - 2J
2_adc

where it is seen that a low value of ad.c., the d.c. conduc-

tivity, results in a low value of reflectivity.

The low electrical conductivity ks a direct consequence

of the large density of states in the d-band. The transition

matrix elements that contribute to resistivity or the inverse

of the relaxation time % contains a predominantly large

contribution from the s _ d transitions, since the probabil-

ity of such a transition is multiplied by the large value of

the density of states of the final d states. In fact, the

interband transitions from s to d states alone account for

90% or more of the conductivity because of the large value

of the transition probability compared with the other modes

of transitions, s _ s, d _ s, d _ d.



-135-

For the particular case of the ferromagnetic nickel,

three states of electronic configuration are possible:

namely, 3d s 4s2B 3d 9 4s I, and 3d I° states. The wave function

for each atom will be a superposition of the atomic wave-

functions corresponding to different electronic configurations.

If @e _ _i and _o are the wave functions corresponding to the

three configuration states in the order listed above, the

wavefunction in an atom of the solid nickel will be in the

form,

Ae92 + Al91 + Ao90

where IA21 a, IAlle8 and IAo le are constants representing

the fraction of occurrence of each of the three configur-

ations. The mean number of electrons in the s states is

then given by

= 2 x IA I + 1 x IAll

which is equal to 0.55 _ 0.6 per atom. This is also

equal to the number of positive holes in the d-band. Another

consideration enters in the study of nickel on account of

the ferromagnetic properties. It is outside the scope of

the present work to discuss in detail the mechanism that

gives rise to the ferromagnetism. We are only interested

in the way the ferromagnetism enters in the optical and

infrared dispersion of metal. It is sufficient to note that,

Vl-(1)
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in the ferromagnetic nickel, the d states with one orientation

of the electron spin are filled, and the holes occur only for

those states of the d-band which correspond to the electron

spins oriented antiparallel to these filled states. The

electrons in the s states, however, occur in equal mixture

of the two spin states. The result of this is that there is

a residual spin component equal to the mean number of posi-

tive holes times the electron spin° Since the mean number

of holes per atom is exactly equal to the mean number of s

electrons, the residual spin per nickel atom at 0°K is

m n
2 s = (0.55 _ 0.60)-_--

The residual spin or the spontaneous magnetization decreases

gradually as temperature is increased, and the metal turns

paramagnetic as temperature is increased further beyond the

Curie point.

The important consequence of this property that will

be of concern in our calculations is that not all of the

s-electrons are qualified to make transitions to the empty

d states: only those s-electrons with the spins antiparallel

to the residual spin of the d states will be able to make

transitions because of the Pauli exclusion principle. At

0°K0 only ½ of the s-electrons are qualified, while, at a

temperature above the Curie point, practically all of the
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s-electrons are qualified. This explains the large increase

in the observed resistivity of Ni above the Curie point

(Gerlach, 1932)0 since the damping contributed by the tran-

sitions is directly proportional to the number of d states

which are available for the transitions.

In short, the electrical properties and hence the op-

tical and infrared behavior of a ferromagnetic metal will

be a function of both the spontaneous magnetization 7 and

tempe rature.

If we denote the spontaneous magnetization per gram

atom at any temperature T°K and at 0°K by _(T) and 7
o'

respectively, the total number of s-electrons that are

qualified to make transitions to the empty d states may be

defined as

- n s ns [ Zo® 7' .3
n =--X=-- I+

s 2 2 F.0

: I<X<2

VI-(2)

where n is the effective number of electrons in the s-band.
s

This shows immediately that resistivity of nickel has an

additional temperature dependence coming from Z besides the

usual temperature dependence coming from the lattice

vibrations. The explicit temperature dependence of the

_rthur _]31ittie, _3ne.
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factor M is available from the phenomenological theory of

Weiss (1907) at high temperature and the quantum mechanical

theory of Heisenberg '.....%_zo) dt low temperatures. A _^_-_i_

theoretical and phenomenological discussion on ferromagnet-

ism and paramagnetism is offered by Van Vleck (1959). For

the purpose of our calculation that will follow, it is suf-

ficient to note that the phenomenological theory of Weiss

shows that (X-l) increases with increasing T like

-constant/T
e

at high temperatures (viz., T > 400°K), and that the theory

of Heisenberg shows that (X-l) decreases like Tm/2at low

temperatures as T is decreased. The observed and theoretical

values of X and _ are shown in Table VIII at _._e_i_:t tempera -

tures for the ferromagnetic metals, Ni, Co, Fe and others.

In the following part of the present chapter, proba-

bility of the s _ d transitions will be calculated by a

method similar to what was adopted in Chapter IV for the

intraband transitions. All the other modes of transitions,

d _ d, s _s, and d _ s will be neglected compared with the

s _ d transitions.

The weight factor multiplying the s _ d transition

probability is about i0 times the normal scattering probabil-

ity according to the evidence provided by the data on the

electronic specific heat (Wilson, 1936). This means that
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neglecting all modes of transitions other than the s-band

to d-band transition will introduce an error of about 10%

in the calculated resistivity. Besides, the results on the

intraband transitions are satisfactorily presented by the

calculations of Chapter IV.

Finally_ it may be noted that the results that are

obtained in the present chapter should be applicable just

as well to interband transitions in other multivalent metals.

For nontransition multivalent metals, the interband tran-

sitions do not necessarily contribute more than the intra-

band transitions. Whatever the case may be, it is useful

to remember that the total damping coefficient, including

both the interband and intraband transitions, can be ob-

tained simply by adding the damping coefficient that is

IV for intraband transitions.

VI-B Calculation of Transition Probability

Because of the large effective mass of the d-electrons,

their contribution to conductivity will be small and can be

neglected compared with that due to the s-electrons. The

empty states in the d-band have a considerable effect in

that the s-electrons can be scattered not only into energy

levels in the s-band but also into the d-band. The large

value of the density of states in the final d states makes

_[rthttr _3Little,_ttr.
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the s _ d transition probability much larger than the normal

s _ s transition probability. Further, the d _ d and d _ s

transition probabilities together are even smaller than the

s _ s transition probability due to large values of the ef-

fective mass m d of d-electrons compared with that of s=

electrons, m
s"

For this reason_ the following calculations will in-

clude only the s _ d transitions° Contribution to the con-

ductivity coming from the s _ d transitions alone explains

at least 90% of the total conductivity according to the

evidence obtained from the data on the electronic specific

heat (Wilson, 1936) 0 1938)o In order to obtain the contri-

butions of the s _ s transition, results of Chapter IV may

be used without necessity of modification. Calculations of

the s _ d transition probability involve essentially the

same theoretical approach as that adopted in Chapter IV.

The s _d transition caused by a joint action of both the

electromagnetic field and the phonon field is again a second-

order effect, and may be calculated from the second=order

s_ d

coefficient B(2 ) (k) representing such a transition. There

are eight different processes for the s _ d transitions,

four of which involve creation or annihilation of a photon

in the s-band, while the other four involve creation or anni-

hilation of a photon in the d-band. These eight processes

are illustrated schematically in the accompanying Feynmann
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diagrams where (A) shows the first four processes and (B)

shows the other four processes.

\

\

(s)

k

(k -+p) (d)

k

(k_+ q)

(A) (B)

In the diagrams, the solid, curved, and broken lines

represent the electron, photon0 and phonon_ respectively.

s _d

The coefficient B(a ) (k-+ _[+ _) may be calculated by

essentially the same method as that adopted in Chapter IV.

We thus obtain the following two equations corresponding

to (A) and (B);

×

(A) p

(-i) [ 1-ei_t/_E(k+-p)® E(k) _ia_

vz-(3)
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s-+d
B (2)"''"_-+m =- 2NpMVE_ }½ ( N4_q eisgsdmd_ Z_.(k_-+q)

× (-i) [" l-e:[_t/_i
Z '(k_±s)- Z (k_)• Zq

VI- (4)

where the energy terms denoted as _ , _', and

resonance factors are given by

_" in various

= {E'(k±_±_)- E(k) $_$ E%}

_' = {E'(k±_±_)- E(k±_) iE_}

_,,= {E'(k±_±_)- E'(k-+_) _}

The energy E'(k), with a prime, represents the energy of

a d-electron and E(k), without a prime, represents the

energy of a s-electron with momentum (_k):

vi-(5)

_e kS
E' (k) = Eo 2m d

_SkS
E (k) m

2m s

VI-(6)

where E o is the energy at the upper edge of the d-band.

The constant factor gSd represents the strength of the

electron-phonon interaction which is generally of the same



-143-

order of magnitude as the energy of an electron and has the

same meaning as g which was used in Chapter IV. As usual

taking gSd and also g to be independent of the energy of

the electron which is interacting with a phonon is the

result of assuming that the electron-ion potential within

single unit-cell is reasonably flat, or equivalently that

the radius of the atomic core is much smaller than the size

of a single unit-cell. This assumption is satisfactory for

common applications such as in the present theory. The more

general electron-phonon interaction which also includes the

deformation of ions was discussed by Bardeen (1937). A

further discussion on this problem is offered in the 1958

edition of The Theory of Metals by Wilson.

As in Chapter IV, we shall ignore the quantities of

the order of (v-_--F>, and take

m(k±_) - E(k) _ _

E' (k-+q_!) - E' (k_icD + _ _ • _

VI-(7)

Then, of all the terms in Equations (3) and (4)_ only those

which have _ in the resonance factors need be considered for

our calculations8 since the others will contribute equally

to both the emission and absorption of a photon and will

thus cancel out when we calculate the net absorption by

substracting the emission term from the absorption term.

_rthttr _._Little,_ttn



By combining Equations (3) and (4), and using the relation

Vl- (t_)

we now have

B
(2) (ktq+-'P-) m + 19"1 2NpMVEq _/ l+Nq {ms_

_k(l -_) ms q_x_E° _ +
l_ei_t/_i

VI-(9)

It may be noted that the value of a tran-
/

sition metal is usually very much smaller than unity q _0)

and such a term in Equation (9) can be neglected without

any loss in the qualitative merit of our calculations. It

is retained in Equation (9)0 however, because this term

can be important when the results are applied to non-

transition multivalent metals for which the ratio of the

effective mass values is not necessarily small°

The probability for the process in which an elec-

tron in the s-band with momentum klmakes a transition to
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the d-state with momentum _e by a joint action of the

electromagnetic and phonon fields is obtained from Equation

(9) upon using the usual relation,

Lim ]B s_d /Tp (r) (k__ k e) = /(s) -- T_ (2) (kl_ke) Ie

where we have put k _ k_a and k e = (kl+c[+D), and r = (+),

s = (±) correspond to emission and absorptions of phonons

and photons, respectively. Thus_ we obtain

VI-(IO)

p (r)(k__ k 2)s_(S) _ -- d ee _e Gs (r)d(5
12vmse _ _ )4

VI-(II)

(_)e (Im)e ,X (qe + k_ + ) 8(Ea-EI+rEK+s_)

_2

= Z'(_) =zo" 2m--"T(k2)_

where we have taken

(E _kl)(E • q) = 0

•kD 2 (E_o_t)2

k 2 qe

i Ee=

_lrthttr _l._ittie,_ttr.



and

sd (_[) = NpMEc[ Nq /
vi-(12)

The probability for an electron initially at the state of

energy El in the s-band to make a transition to the final

!

state of energy Ee in the d-band is defined as

= _ (r) (kl _ k_e) [I-F(E_)]P (s)(r)(E l )sd 2 P (s) VI-(13)

where the factor 2 is multiplied because two electrons

with opposite spins can occupy the state of same momentum

k__e according to the Pauli exclusion principle, and F(E$)

is the Fermi function evaluated at the final state E'2-

The summation over _a may be replaced by the sum-

mation over the phonon momentum _ and hence by an integral

v fff(S_) 5 (d c[) .....

provided that we are careful in establishing the integral

limits in the integral over q since the density of states

at the final state now contain a factor
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IJEo -

instead of _. Occurrence of the factor _ instead

of _-Ein the density-of-states function leads to the lower

limit in the q-integral given by

qmin = I kd - ks I VI-(14)

where k d and k s are the momenta corresponding to the high-

est occupied levels in the d- and s-bands, respectively,

and are given by those at the Fermi level according to

the relations,

ks = _e EF

kd = _ e (Eo - EF

Equation (13) is solved by removing the delta function

through integration over the angular variable cos8 =(k_/o_)

/

kl q "

In obtaining Equation (ii), we have averaged (E._)_ over

the azymuthal angle ¢ with _l as the polar axis; similarly,

(E.kl) was substituted for being its value that is obtained

later on integrating over (d3k_l).

_Irthur _._Littlo,_.n



We now have

-1L 8-

#'_%

_L, (E1 )sdP(s)

-LIrod..- _VdKl

4s_2 rose (_)4

/ _ \_ _qo

"sh°I _(r)
(kl +_j d q dq Gsd (q)

qm

VI-(16)

where Wd is the weight factor which comes from the density

of states of the d-band, and is the same as that used by

Wilson (1938), and where G (r) (q) and Eq have been assumed

to be independent of the angular variables. As in Chapter

IV, we shall assume that most of the contributions to

Equation (16) come from those electrons which are in the

neighborhood of the Fermi level, so that k I in the

numerator and kl e in [...] in Equation (16) may be replaced

by the Fermi momentum k s-

Now, we need to average Equation (16) over all the

initial occupied states in the s-band using the Fermi

function F(E I) for the s-band, and we have
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(P((s_) (s _ d))

r. _(r) F(EI)
k_ _(s)(ED sd

e2 Ee Dsd(K0s )2

3e _emsksEFUL 5 (_i(_)4
_ddJ J Eq2dEq < N(q) J

KO M

+\KO s// \ m,/
VI-(17)

whe re

Dsd =

2

_ gsdWdNpM

(r)
0F(s ) (q) = / dz

ez 1

l+e z l+e z+a

VI-(18)

a

Ke
m

KO
s

1

_UL ks ; 8 = KT

Equation (17) involves essentially the same types of

_[rthur _l._little,_rtr.
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integrals as Chapter IV except for the fact that the lower

limit of q-integral in Equation (17) is not necessarily

equal to zero.

The net amount of power absorbed per s-electron is

defined as

r_(-+)
(r) }- P(+) (s _ d))

If there are ns number of s-electrons per unit volume that

are capable of making transitions to the d-band, the power

absorbed per unit volume is simply ns times W--sd. As was

explained previously, ns of a ferromagnetic metal is not

equal to the total effective number (n s) of s-electrons,

x(T)
but is equal to 2 times n s-

Upon combining Equation (17) with (19), and after

some necessary mathematical manipulations, we finally ob-

tain

(Power expenditure per unit volume)

= ns W--sd

VI-(19)

2_ e m s Je msEF 3"M K 8

md T 3

VI-(20)
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where

z(_,T) = e_tsinh

1

ms/

(e_-l) 2

_3 (U,_) (e2__I)

(e_-l)_ _[_4(_,_)+_4(u,_)]}I_s (_,_) - (e2g.l)

w-(21)

; tL = B_ ; cz = _K@

where Jn and K n are exactly the same as Jn and K n defined

in Chapter IV except for the fact that we now have the

lower limit of these integrals different from zero: the

bars represent such a cut-off at the lower limit. Thus,

with the definition of the cut-off

_M = 8KSM VI-(22)

we have

Jn ( It,_) /
%

yndy/(e y- e _) (e _- e -y)

Kn(_0_) = / yndy/(eY- e _) (e _-

%

e -y) (eY-i)

VI-(23)
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--0(5) and _o(5)and similarly, we define the functions Jn

such that

jq (_) = lim -- I_o Jn(g'_) = yndy/(eY-l) (i-e-Y)

Kn°(_) = _olim K--n(_,_) = f yndy/(eY_l)a(l_e-Y)

The dispersion properties that result from Equations

VI-(24)

(20) and (21) will be obtained in the following part of

this chapter. It will be shown that the d.c. damping co-

efficient that is obtained from Equation (20) agrees

exactly with that which was obtained in the theory of the

d.c. conductivity by Wilson (1936, 1938).
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VI-C Dampinq Coefficient and Quantum correction Factor

for Interband Transitions

Calculations of the damping coefficient Pep(P,a) and

o
P (_) for the s _ d transitions are carried out in exactly
ep

the same way as in Chapter IV, and therefore various argu-

ments pertaining to the particular method that is employed

in the present theory for computing these quantities shall

not be repeated.

Upon using Equation (20) in the relation

E 2

2 a (_,_) = n s Wsd VI-(25)

we obtain the following expression for the frequency-

and temperature-dependent damping coefficient P (_,_);
ep

Pep (_' (x)= _ n_n_) tf_'NP gs_ Wd
4-e msEF ml M K O

VI-(26)

where (ns/ns) is the ratio of the effective number of s-

electrons which are capable of making the s _d transitions

over the total effective number of s-electrons, and for a

ferromagnetic metal, may be expressed generally in the

form,

_rtllur _3/.ittle,_,in
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= ½ X(T)

= ½[i+ %-z]Zo
VI- (27)

The numerical values of X(T) are available in Table _I_

and Table_{ for Ni0 Fe, Co and others. For a paramag-

netic transition metal, ns is equal to n s and X(T) = 2.

The same is true for a ferromagnetic metal when tempera-

ture is well beyond the Curie temperature 8 c. For a

ferromagnetic metal, the quantity of Equation (27) is most

important at very low temperatures at which it is nearly

equal to (½). As a result of this, a ferromagnetic metal

has a smaller resistivity at low temperatures than a

paramagnetic metal if both have the same values for other

parameters.

Just as in Chapter IV, the frequency- and temperature-

dependent function Z(_0_) of Equation (21) has the property,

= VI-(28)

and is independent of frequency in the limiting cases of

<< _ and _ >> (_, being a slowly varying function of

for all values of m and T except for the case of 1 << _ <<

It is easily shown that Z(_,(z) acquires the following forms

in the two limiting cases;
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z(_,_) - (_) + , VI-(29)

md 2
) o_ +

+2 >>_

%

VI-(30)

both of which are independent of _ and hence of _, where

--O

J_(_) and Js(_) are given by Equation (24). Upon using

Equation (29) in (26) the d.c damping coefficient F o(G)
' " ep

is found as

el:,(o:) : 9_---_3 fl(--_s ) _2 Np gs2d_d <_ (I+_s_l_ _

x { _ o(_)+ (..._)_
(,+_Y'ms/

VI-(31)

This agrees exactly with that calculated by Wilson

(1938) when we take to be much smaller than unity and

equate (ns/n s) to unity. For most of transition metals, m s

_trthur _132.ittle,_.r.



is actually much smaller than m d and ignoring the terms

containing the factor is well justified: e.g., for

the triad of transition metals, Ni, Pt, and Pd, we have

¢__s_ <_0) (---_'_ms -e) . ,- 0 and for Nb, kmd/ . 0(i0 Thus it is suf-

ficient to take Z(_,_) and P (_) in the form,
ep

z(_,_)
e_s inh

[Jm(_,_)- _(e_'l)_ <Ja(B,_)+2Ke(_,_)> ]
(ee_-l)

VI-(32)

F ° ((_)m 9_3 _l_ i_i_NP gs_ @d _m--_<--_ e I _3o(00
ap T J2 msZz_ M Z 0

VI-(33)

C_ eX-1

VI-(34)

AccordingAthe results of Chapter IV, that part of the damp-

ing which originates in the intraband s _ s transitions may

be written in the form

VI-(35)

1

= Rss a---{- Js ° (_)
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Then, for a comparison of the contributions by the

s _ d and s _ s transitions_ we have the ratio

_ ep _ .__ ( ns _ mdwd J3 (CO

o \ ns / ms "_5o(_)Fep(_) Isis =

VI-(36)

e Since we know that k is ofwhere we have put gsed = gss" s

the same order of magnitude as qo t we have 8s_8 in order

of magnitude. At room temperature, the ratio is mostly

due to while, at very low temperatures, the ratio

\m s /

can take on a very large value. For nickel, the data on

(->mdWd

the electronic specific heat show that • ms = I0.

By dividing Equation (21) by (29) and ignoring the

m(_terms containing we find the following as the b-

factor for transition metals;

e_si_----_ [ (e_-l) e (3e (_,_) + 2 Ke (_,_)>]bep(_,_) = --_(_) t33(_,_)'_(e2_.t)
VI- (37 )

This satisfies the correspondence requirement,

lim (_,_) = 1
_0 bep

VI-(38)

_Irthur _._little,_rtt'.
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In the near infrared limit of _ >> 6, we have

= 2 i + o(_)bep (P 05)

VI-(39)

VI-D Dispersion Properties of Transition Metals

The results of the preceding chapter allow us to write

down the optical conductivity o(_0_) in the forms

nse2 /_(_05) = m s Ps we + Ps _) VI-(40)

where F(_,_) is the sum of the electron=phonon damping co-

efficient P (_) which is given by Equation (26)_ and the
ep

damping terms due to the electron-electron collisions_

and that due to the impurity scattering, F_o

Equation (40) includes only the contribution of the s-

electrons; the d-electron contributions as well as the intra-

band transitions are neglected. When contributions of both

s- and d-electrons need be considered_ Equation (40) may

be replaced by the more general form0
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(. /_ nde2 _2 e)_ VI-(41)ns ee a + rs2)+ _ rd + rd_(_, ) = ms r s

and Pwhere the electron-phonon contributions to both F s d

include the intraband transitions as well as s _ d tran-

sitions. In general, it is quite sufficient to take a(_0_)

in the form of Equation (40) and ignore the d-electron con-

tributions as well as the intraband transitions in s- and

d-bands. Therefore, it must henceforth be remembered that

whenever we speak of F (_,_) of a transition metal, we
ep

mean the one due to the s _ d transitions.

The over-all b-factor for the total damping coefficient

P(_,_) is again defined as

b(_, a) = bep(_,a) + -_ bee(_,a) + Fo_

where b
ee

and

(_,_) F° and F°
' ee' M were discussed in Chapter V,

VI- (42)

2[rthur _.:_Litth',_tt c.
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The optical dielectric constant 6(_,_) is obtained

from Equation (40) by using the Kramers-Kronig relation.

The relevant mathematical arguments which were applied in

solving the Kramers-Kronig relation in Chapter V are just

as applicable to transition metals, and thus will not be

repeated here.

With the definition of the temperature-dependent

_(_) such thatquantity
I

_) = bep(i_,c_) = R b (i_o_ ,c<)e ep
VI-(43)

the optical dielectric constant is given by

[l-

2-

Q_)o

4T[ t_s

VI-(44)

Thus, all the relations of Chapter V should be applicable to

transition metals when we replace bep and _ep of Chapter IV

by those given by (37) and (43)0 respectively.

The difference between the results of Chapter IV on

non-transition metals and the results of the present chapter

on transition metals are exhibited most strongly at low

temperatures and in the near infrared. Some of these propcr-

ties will be discussed.
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VI-E Some Low-Temperature and Near Infrared Properties of

Transition Metals:

For the discussion on low-temperature and near infrared

properties of transition metals and comparison of these

properties with the properties of non-transition metals,

sd given by
it is convenient to define a constant Rep

@11-3

Z ms/\ ' m,,/ \ 01

vz-(45)

Then, the electron-phonon damping coefficient that was

obtained in (26) can be written as

(--6_) &_ ZCr"°O

vz- (46)

where b is that given by (37)
ep

First, let us investigate the low-temperature behavior

of _). According to (46), we have

VI- (47)

_[rthur _l._Little,_rtc.
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In the limit, o_ >7 I , this becomes

• >o

v_-(48)

v_-(49)

where

_[

i
I

: ferromagnetic metal

: paramagnetic metal

and [-_) is of the order of unity since k s is in general

of the same order as the Debye's cut-off value °_o . For most

of transition metals, (XM is not equal to zero, and hence the

equation (49) is to be used. For these metals, the electron-

--C_M
phonon damping coefficient vanishes like _- e ,

when T is decreased to the absolute zero. The negative

exponential factor was also obtained by Wilson (1938). On

the other hand, the damping contributed by the electron-electron

collisions and the impurity scattering was shown in the previous

chapter to be of the form,

v_-(5o)
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where Ree and iM are nearly independent of T, and Ree

is in general much smaller than Rep"

Therefore, for metals with _a different from zero,

the over-all d.c. damping coefficient at very low temperatures

retains only that part which is given by (50), despite the

fact that the electron-phonon part alone constitutes the most

of _°(_) at higher temperatures. This explains the __z

dependence of resistivity of some transition metals which

has been observed by various experimenters. We summarize

the above discussion by writing down P° as

o(M >0"

Vl- (51)

The same was found to be true even for a noble metal

due to the rapid decrease, _ T _ of _a;(_) with

decrease in temperature, although not as rapid as in (_9).

Whether there is a transition metal with _=O

is a question that is yet to be answered. For such a metal,

the s > d transitions at the Fermi level can take place

without a finite momentum transfer implying that phonons with

the average energy of the order of -_ (KT) are capable of

stimulating the s _d transitions even at a very low

temperature. The following discussion based on a rather

qualitative description of the properties of the s- and d-

_trthur _._£ittle,_rt_.



bands suggests that, out of all transition metals and likewise

of all multivalent metals for which interband transitions

are important, there can exist a metal with _ = o if

the electrons in the outer band (s- band) are neither more

nor less in number than what is required to completely close

the empty states of the inner band (d- band) that is involved

in the interband transitions. Three transition metals which

do satisfy such a condition are the triad, Ni, Pt' and Pd"

For nickel, the three possible configurations are (3d 8 4s2),

(3d 9 4sl), and (3610 4sO). For platinum, they are the con-

figurations, (5d 8 6s2), (5d 9 6sl), and (5dlO6sO). For

palladium, they are the configurations, (4d 9 5s l) and

(4dlo 5s0). In all three metals, the s-electrons plus the

d-electrons amount to i0 electrons which can exactly close

the d-band. Further, it is known that all three metals have an

approximately 0.6 electrons per atom in the s-band and the same

number of holes in the d-band. That these metals can have

_M =-o and hence

kd=k s

may be shown by computing the total number of empty st&_es

in the d-band and the total number of s-electrons from the

denslty-of-states functions of the two bands. At very low

temperature, the Fermi function (F(E) is nearly equal to

unity, and we have



E:F

0

Eo

lq.&-- E") cl E

0

where _i%

and the density-of-states functions

_&(E) are given by

is the number of empty states in the d-band

_s(E) and

YII&"h,-'''_2"/

(7} ,/Eo- E

Using these in (52), we obtain

VI- (52)

v -(53)

Therefore, we find that kd=k s for those metals for which _

is identically equal to _t_ .

Although the above result may not lead us to a definite

conclusion, due to the use of the simplified forms of _s

_& , it does permit us to suggest that, if there is any

metal which has _M=O , the triad of transition metals

Ni' Pt' and Pd' are the most likely ones. In fact, according

:_l:thur _.;l£{ttle, _Jltco
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to the observations by MacDonald and Mendelssohn (1950),

the low-temperature resistivity of platinum has been

O

interpreted as having a T- dependence on temperature, which,

i,--,,,i0 I. ,_

if real, i_i_ be attributed to lee L_J . On the other hand,

if platinum has c(_= O so that equation (48) is

applicable, the low-temperature resistivity should have both

T __T _- and dependence on temperature coming from

and , respectively. The total damping co-

efficient will then be given by

where the first term is not necessarily much smaller than

the rest unless I is very near the absolute zero:

e.g. at (_)= I/2o , we have

"10

-3

vz-(55)

and, since Rep is generally larger than Ree by a factor of

l0 or more, _; is not unimportant even at a temperature
I

O

as low as i0 _ 20 K.

It is not difficult to see that, even if the low-

Ttemperature resistivity exhibits the term, a clear

distinction between T L _T _-- terms is not an easy task
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at low temperatures, and it is thus very possible that this

term has been confused with the -T _- term in the past

measurements.

Let us investigate the low temperature properties

of the quantum-corrected damping coefficient ,eF

in the near infrared, i.e. _ _ _>>_ . The low temperature

properties of _ (_,_) in the spectral ranges, _<

will be left to the future chapter dealing with the absorption

at very low temperatures.

We saw in the previous chapters that, unlike the d.c.

damping coefficient _e;(_) , the quantum-corrected damping

coefficient maintains a relatively large value in the near
o

infrared even at 0 K. It will be shown that a similar quality

is also found in transition metals, and that this is true for

all transition metals regardless of whether a M vanishes or

not provided that _M is of a muc_ smaller order of magnitude

than _ .

At very low temperatures, the b- factor for the near

infrared spectrum reduces to

b Ce, ) '

v -(55)

_[rthur _._!ittle,_nc.
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When we use this in (46), we obtain

sS.
r" o M-

_ i_.- K'a " p.M.
m • vz- (56)

which is independent of both _ andT, where we have taken

®_ << ® . Thus, unlike _) , the negative ex-

ponential factor _M cancels out, and the electron-phonon

scatterlngmakes a large contribution even at very low

temperatures. This implies further that the contributions

to the damping by the electron-electron collisions and

impurity scattering will be important at very low temperatures

in the near infrared only if they are important at higher

temperatures. When these two processes need be considered,

we use the formula,

_>'>I

VI- (57)
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while _o (c_) , which appears in _ (_,_) , becomes

_- ['1 ° ,

3-[o has a weakIn (57),

T O°K- vz-(58)

TZ-dependence while in (58),

_h_(_) has a relatively strong -[Z-dependence on temperature,

slnce, in general, Re_ >> Ree >_. i_ . As a

specific example, let us investigate the near infrared absorp-

tivity at very low temperature. According to Chapter V, the

bulk absorptivity AB is given by

/,,_ 11

• ms _

A_ n_e_ "q'° G_"

v_-(59)

where

]Io G_ = o +
60 Z

vi-(6o)

and _o is given by (57). In general, Red >> Ree , and

when this is true, _ee is also much larger than c0o so that

#_ _ _(O) _9. for a reasonably pure sample. Thus

the total near infrared absorptivity A of a transition metal

_l:thu_ _l._littb,_rtc.
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is

vI-(61)

where the second term is the absorption due to the anomalous

skin effect and _F _OC) _ l(3_)C o The numerical

value of Rsd can be determined from the room temperature

value of _e_(_) since the complete temperature-dependence
O

is specified in (47), and _p(_) is easily found from the

optical data and also from d.c. electric measurements.

The temperature-dependence characteristics that have

been discussed here are to be used in various dispersion

formulae that are given in Chapter V in applying the present

theory to transition metals. It must be kept in mind that

some transition metals exhibit resonances at relatively long

wavelengths compared with noble metals, and when this happens

the resonance contribution must be substracted out of the

dispersion curves, by use of the Kramers-Kronig relation or

by other means, before the theory is applied. A method of

substracting the contribution of the bound electrons to the

infrared dispersion was illustrated in Chapter III where we

used the Kramers-Kronig relation. When the resonance band is

narrow and clearly distinguishable, separation of the free-electron

part of dispersion becomes a trivial matter.



Table V

Numerical Values

1 = T

®

0

0.05

0.076923

O.1

0.125

0.16667

0.2

o.25

o°33333

0.5

o°66667

o°83333

1

1o25

1o52

124.43

124.42

123.14

116.38

IOlo48

70.

50.

29.

12.

3o

Io

O.

O.

O°

Oo

873

263

488

771

2293

1199

L_7907

23662

O98845

o45].

.qrthttr _._4ittle,_rtr.



Table VI

Temperature-dependence of Damping Coefficient

in Gold (Q= J75_ )

273

87.43

78.86

57.8

20.4

18.9

i_. 3

12.1

ll.1

4.2

calculated

1

O. 2645

O. 2276

o.1356

0.00604

0.00346

0.00117

0.oo051

0.00033

3 x io-6

p°(r)/_°CzTi °)

observed

1

O. 2551

O. 2187

O. i314

O. OO58

O. 0035

u. uu±3 I

o.00048

O. 0OO30

3 x iO-6

-2lrthttr _l._Little,_rtr.



Table VII

Metals

A1

N i

G a

H
g

T i

S n

Z
n

C u

C_o x Ic>

(Present

Theory)

14

18

_.8

3.5

o.94

1.6

5

12

(Electrical 5_ qC_c_)
Meas. )

15(Meas. by B.$ C.)

22(Measo by

Golovashkin et al)

_o6(Meas. by B.&C.)

3.5 (I.C.T., 1936)

0.94 (IoCoTo, 1936)

1.64 (Ho_B.)

7.8 (Bulk)

(Am° Inst. Phys. Hbo

1957)

15 (Bulk)

(Am. Inst. Physo Hb,
1957)

13o5 (Measo by S._P.)

1.1

1o2
t

Io0

1.0

Optical Data Used to i

Calculate Theoretica]
Value of o_

O

Beattieg Conn (1955)

Golovashkin et al

(1960)

Beattie_Conn (1955)

Schulz (1957)

1.0 7 Schulz (1957)

Io0 Hass_ Bradford

(1957)

1.6

3.8

1.1

Hodgson (1955)

Hodgson (1955)

Schkliarevskii

Padalka (1959)

I

_eThe spectral range in which the optical data are available was too

close to the resonance region, and hence this value is not
completely reliable.

By "Bulk" is meant that O_o values quoted are obtained for bulk

samples while the optical data were taken with thin layers or
mirrors.

_rtI_ur _3£ittlm _Jnr.



Table VIII

F e Co , N i ' i(th e Y)4j = or

7,.C-T)

,

0. I

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.85

o.95

I. O0

1

O. 996

O. 99

o.975

O. 95

O. 93

O. 90

0.85

0.77

0.70

0.46

0

o.50o

0.502

0.5o5

o.512

0.525

o.535

o.55o

0.575

o.615

o.650

0.770

I. 000

1

O. 996 _

O. 99

O. 98

O. 96

0.94

O. 90

o.83

0.73

o.66

o.4.o

0

o.5oo

o.5o2

o.5o5

o.51o

0.520

0.530

o.55o

o.585

o.635

O. 670

o.8oo

1. 000

i

I. 000

1. 000

o.997

O. 983

O. 958

O. 9o7

0.829

0.710

o.630

o.380

0

,m

o.5oo

0 o5OO

o.5oo

0.501

O.5O8

o.521

O. 546

0.585

O. 645

o. 685

V. I.)I

o.81o

1. 000

For N i only

Computed from the Am. Inst. Phys. Hdb.
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Table IX

Theoretical Values of Microscopic Parameters

i

Metals l _ io--_2-

L_D

Cu 4.2

i

Ni(1) 1.2

Ni(zi) o.8
I
i

A1 7.1

AI o I 6.8

(78 K) I
t

Pt , 5.7

t
L

Ir 1 8.I

Ti i 2.a

Hg 7.65

Ga i 14.6L

Zn L i. 26

Sn 6.16

o

Qsec-')

o.533 I1.2
I

i

0.625 _1.24

i

_l.1 !l.__
* I
: i
1.12 il.2

I

0.141 ',5.94

q

10.6 1.1

I

17.1 !l.1

i
, , i

3.52 1.3
i

21.4 I 1. oo
, !
, I

i
I

1o.7 t 1.o7
: i
0.94 i---

3.0 ---
i

i×IG'_

20 !3.I _. 3
i

4.8 !5o 0.8

2.0 _73 0.7
I

18 i4.2

1.4 !ii.7

I

1.2 1.7

1.6

0-94-1.2

'.

_.5 io.28
I

l
i

16

i

%_o! 7"
e_'_. eft, _

_/_) /_#

2.7

2.4

1.3

8

1.7

1.55

I. 88

I o ,_V----
_r_x,o I _ ,

(_) I(_

D.9 6.2

483

i

i

i42J$ O. 6 5.1

I
1718

t
,i

o.9 15

449

62O

860

Cu, Ni(I): Beattie_ Conn (1955)

Ni(II) : Shkliarevskii _ Padalka (1959)

All metals for room temperature except for this
_/= Sommerfeld constant for electronic specific heat

7

O.1

]

o.o6

!0.3
i

:o.o5

I
I

!
io.i
I
I

il.1
i

0.3

I
! 15

!14
{

i 16

I
I

_8.4

16
I

i
I
i 22
I

I
1 6.k
I

!14
i

For other references on optical data, refer to Table II and VII.
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Table X

Elements

F e

Co

N i

Gd

D

Curie

Point

77o

1131

358

16

-168

221.9

162.5

57.50

253.5

Z i
i o

(293K)

i

i 218.0

161

54.39

! 0

0

i I

o

(293K)

o.5o9

o.5o5

o.527

I. 000

1.00(0)

_qrthur _._£ittle,_rlr.
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Chapter VII

Theory Applied to Optical Data

VII-A Calculation of Microscopic Parameters

The microscopic parameters that define the optical

dispersion properties may be calculated from the best-fit

theoretical curves of either the optical constants (n,k) or

(0_£). In general, it is much simpler to use the data on

(076) rather than (n,k) since the general formulae for the

former are less complicated than the latter. If the optical

data are available in the spectral range, _ 00_- << COo,

which, for many metals, corresponds to i_ k/_ l0 W , it is

convenient to use the best-fit theoretical curves of (n,k).

izi this part of the spectrum, _ _=_e_1 -Fr_-,-m_l _ fn-r k

is exactly the same as that given by the classical Drude

theory while the formula for n can differ substantially from

the classical formula; namely,

VII-(1)

n_ i

2 ez @_-

_rthttr _.:_J.ittle,_.c.



-172-

= 1/2 CO° l[o <'_o 1

:/_ p _ + _ +

VTT-- I 9%

It is seen that k describes a straight line when it is plotted

against k while n describes a straight line when it is plotted

against kz . The critical frequency _o is obtained from (i),

J

and when this is used in (2), the numerical values of _o

and_ee follow immediately. The value of the electron-electron

damping coefficient _o .
ee is obtained from _e e when we use the

relation,

ee

/8= J/KT

_: J� K@

VII-3

where Ree is a constant which is independent of _0 and T. The

values of _ep__ and hence_e p can be determined from (i) and (2)

only when we neglect _°compared with _ee and _e ° This
p.

procedure is valid for metals which are substantially free of

impurities, provided that the temperature is not too low.

method of determining the "Restwiderstand" term, _o

The
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from the low-temperature optical data will be explained in a

later part of this chapter.

Once the values of _o, _ep, and _ee are determined, we

can predict the values of (nek) and other dispersion quantities

at any other temperature and frequency.

It is important to note that, in fitting (i) to the

corresponding experimental curve, the extrapolated straight

line must pass through the origin at _ = O , and that, when

(2) is plotted against _z , the non-zero value of n defined by

the intersection of the straight line at _=O is entirely due

to the Umklapp processes which give rise to a non-zero contribution

of the electron-electron collisions.

The remarkable qualities of the formulae (i) and (2) are

clearly demonstrated in Figure 8 to ii for gold and copper, and

in Figures 15 to 18 for the multivalent aluminum.

For many metals, it is not easy to identify the portion of

the spectrum where the formulae (i) and (2) are applicablejo__

general formulae of chapter V need be used. In this case, it

is more convenient to obtain the best-fit theoretical curves of

<O_j E D than of (n,k) using the formulae;

_[rtllur _._LittIe,_nr.



where _3Lo _ -_o are independent of _.

The best-fit theoretical curves of _- _ [ ] -- E 3

are shown in Figure 7, Figure 12-14, and Figures 19-24

for ten diffenent metals including the noble, multivalent,

and transition metals. In particular, the multivalent metal,

aluminum, is examined at two different temperatures, 78 ° K.

o
and 295 K.

Table IX shows the numerical values of various micro-

scopic, parameters that are calculated from Figure 7-24.

These parameters are sufficient to enable us to calculate the

d.c. electric properties and the dispersion properties at

different spectral and temperature ranges.

The d.c. electrical conductivity C_ is calculated from

the formulae,

r°= jo o÷ Q°
VII-(5)

where --/0 may be ignored at ordinary temperature. The

theoretical and measured values of 0[ are shown in Table

VII for a variety of metals. For most of the metals that are

examined, the theoretically calculated values agree well with

the electrically measured values. Note, in particular, that
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the values for _[ and A I have been improved considerably from

the old values of Table I. In Table VII, some of the measured

values of c_o are not obtained from the samples on which the

optical data are available. For an accurate comparison between

the calculated and measured values of O_o , both the optical and

electrical measurements must be made on the same sample, since, as

was explained in Chapter III, the optical and electric properties

vary depending on the manner in which the metallic surface is

prepared. For instance, most of the available optical data are

obtained from vacuum evaporated surfaces while the handbook values

of C_ are for bulk samples. Beattie and Conn (1955) obtained

the optical data for several metals, each with several different

surface preparations. The variation in the values of the electrical

and optical properties among differently prepared metal surfaces

VII-B Calculation of Absorptivity

With the help of the microscopic parameters that are given

in Table IX, the absorptivity is calculated from the formula,

4- r_

A = ÷

32

VII-(6)

_Irthttr _3Little,_ttn



where As is the absorptivity due to the diffuse surface

scattering (Dingle, 1953). The skin absorption is important when

the mean free path given by

is much larger than the skin depth S$ which was given

in Chapter III, where _R , unlike the d.c. relaxation time

o , is now given by

ep . -
viI-(s)

according to

decrease of

value,

According to the original theory of the anomalous skin effect, the

d.c. relaxation time _R° was used in Equation (7) so that, at

low temperatures, _ can be substantially larger than _S due

to the rapid decrease of _o with decrease in temperature.

According to the present theory, however, % does not

increase so fast as might have been expected from the theory of

electric conduction, since a rapid increase of bef

fe si__
\ T/ j_ completely counteracts the rapid

_; , until _ reaches the constant low-temperature
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T O°K
VII -9

This is to be compared with

__ :-"1°

which results when is used in place of _o

As the result of this, the absorption due to the anomalous

skin effects is not so significant in the present theory

as was suggested in the original theories of Reuter and

Sondheimer (1948) and Dingle (1953). For transition metals

and also for multivalent metals for which inter-band

transitions are predominant, the relation (9) is replaced by

VII-(10)

The constant Rep can be obtained from the known values of

upon using the relation,

VII-(11)

o

° I o

for nontransition metals, and the relation

VII-(12)

2[rthur _13_ittle,_.r.
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o _[ 1 o

/ o

for transition metals, where the functions J5

o

and J3

VII-(13)

are available in the appendix in calculable forms: the

o

numerical values of _ (_) are computed in Table V and VI.

Since Rep is usually J-iO "_ I times as large as _;

at room temperature, _ for both transition and non-

transition metals at very low temperatures and in the near

infrared is given by

VII-(14)

which implies that the mean free path 1 increases by a

factor of /0 _ /O0 when T is lowered from room

temperature to the absolute zero. This is in marked contrast

to the low-temperature electrical properties and also to the

existing theories of optical dispersion.

The absorptivity values that are computed from (6) are presented

in Figure 28-31 and are compared with the experimental curves

for the liquid metals, Hg and Ga, and for the transition metals,

Pt, Ti, and Ir. The contributions by the Umklapp processes

are indicated in Figures 29-31. One glance at these curves

is sufficient to show that the transition metals with
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predominantly interband transitions exhibit a markedly greater

contributions of the Umklapp processes than other metals.

Table II shows the theoretical values of the low-temperature

(4.2°K) and near infrared (I_ l_) absorptivity of eleven

different metals. The theoretical values for Cu and Ag are

in agreement with the experimental values of Biondi (1956)

within _ 2%. Unfortunately, the experimental values are as

yet unavailable on other metals, and no further comparison is

possible. The relative importance of the bulk absorption as

compared with the skin absorption is represented by computing

the per cent value of _=_-- _.

It is seen that for all the metals that are studied, the bulk

absorption ranges from 20% for Ag to nearly 100% of the total

absorption. In general, the bulk absorption is relatively

more pronounced in multivalent and transition metals than in

noble metals. It is hardly necessary to mention that, according

to the classical theory, there should be almost no bulk con-

tribution to the low-temperature absorption, and that the

remarkable features demonstrated in Table II are entirely

the consequence of the quantum correction factor" ,bep , of the

present theory.

VII-(C) Calculations of DispersiOn Properties at Different

Temperatures

We have already demonstrated how the microscopic

parameters that are computed from the room temperature optical

_:thm: _l.tiittIe, qJm'.
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data can be used to compute absorptivity at very low temperatures.

We may likewise calculate and hence predict the values of any

dispersion property at different temperatures when the values

of the fundamental microscopic parameters are available from

the optical data at a particular temperature.

Before we proceed with numerical applications, we need

to establish the validity of the T-dependence that is

formulated in the present theory. The temperature-dependence

of _$(_) is well established and has been popularly used

in the past. Therefore, we need to concern ourselves only with

the T-dependenc_ of the electron-phonon damping coefficient

_)o and the bep( ). We explainedquantum-factor,

previously that the T-dependence of _ (_) of the present

theory is entirely consistent with the T-dependence of the

well-known Gruneisen formula and also with that which is de-

rived in Wilson's theory of electric conduction in metals, and

that Gruneisen's formula is in excellent agreement with the

observed heat capacity data: e.g. see Figure 2- (a) and -(b).

Although this enables us to conclude that our formula for

F(_) is valid, we have yet to establish the validity

of the T-dependence of bep( _ _ ) or equivalently of

b (_).
ep

For this purpose, we shall use the optical data on

aluminum which are obtained at two Widely separated temperatures,

78°K and 295°K0 by Golovashkineta] (1960). We saw previously
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that the theoretical curves for n_k0 O" and (l-E) at the two

temperatures agree well with the corresponding experimental

curves, and that the calculated value of 0_o at 295°K also

agrees with the electrically measured value. Table IX shows

further that the values of the temperature-independent

parameters which are calculated from the two separate data

agree with each other within _ 5_. Therefore, we only need

to show that the value of (7_ v_; which is obtained from
ep

o
the data at 78 K by using b (78°K)=(5.°,4)-- reproduces

ep

successfully the value of ¢;( oKZ q E ) which is obtained

o
independently from the optical data at 295 K using b - --(2@5°K)

ep

= 1.22. From the optical data, we have

_o 8 ° = ;O,s -L(7 K) i.41 x sec.

f('215°K -_l.,Z × iO se.c..

each of which has been obtained independently with

On the other hand, Table V gives us

,TZ(,2_,5°K) = O.s

j° ( 78 °K)= 50

s o that

_r [xqS°K)= 1_(78°K)x \ 76 / J-Z (78°K) _

Iol '7 ",<I0 sec.

VII-(15)

_=375°K.

VII-(16)

_rthur _]._/ittle, _d.r.
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14

Comparing this with the value, 1.12x10 sec.-i of (15), we

find that the two values agree within 5%. Since use of

_ep(_) essential in the values of (15) from thewas obtaining

optical data, the good agreement between (15) and (16)

automatically establishes the validity of the temperature-

dependence of b
ep

Now that we have verified experimentally the temperature-

dependence of the dispersion formulae, we are ready to predict

various dispersion properties at any arbitrary temperature.

As an illustration, we shall calculate the near infrared absorp-

tivity and the optical constants (n,k) of aluminum at very

o o
low temperatures (_I0°K), 375 K, 470 K, and 570°K in addition

o o
to the values at 78 K and 295 K which are already available

from the optical data of Golovashkin etal (1960).

In the spectral range defined by

we use the formula,

0Oo

In the same spectral range, the formula for the index of

refraction is

2.

i

__ k_

- 4 As

VII-(17)

vxi-(i8)
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is nearly independentwhere (17) is to be sued for A B, and

temperature and is _ _o_ .
of

Upon using the numerical values of various parameters

given in Table IX and V, we obtain

R_ = 7,o x io'_ _7_

_ : 7.7 x IO'* sect

-9-e_= I.%4 X I0 I_ _e_c'_I

and thus (17) becomes

A_ _ o o_o_)_ _(_) (_)+ ;d

The values of A=(AB+A s) are plotted at the temperatures,

T ! 10°K, 78°K, 295°K, 375°K, 470°K, and 570°K in Figures 25

26. The values of n are plotted in Figure 27. The absorptivity

describes a straight line "'_^-w_,=**plotted --_-_+ \AI i

while n describes a straight line as a function of _z In

obtaining the values of A, we have used AS=0.004 as the skin

absorptivity.

It should be noted that if the Umklapp processes were

completely absent, the second term of (19) would vanish and

A B would be independent of _ . The curves of Figure 25 are

then replaced by a family of horizontal lines, while the

straight lines of Figure 27 for n should all pass through the

origin.

Finally, it may be said that calculations similar to what

VII-(19)

2_rthur _3!ittle,_ar.



has been done on aluminum can be made on any other metal for

which optical data are available. This applies to all the

metals that have been investigated in the present chapter
on

except for solid bismuth. The optical data/bismuth show

extremely anomalous behavior, as shown by the curves of O-

and (l-E) in Figure 32. Whether the anomaly is due to

oxides or due to some peculiar properties of the lattice is

yet to be determined. While both the present and all the

existing theories completely fail to explain the peculiar

dispersion properties of solid bismuth that are observed by

Markov and Khaikin (1960)_ Table III shows that the liquid

bismuth is explained even by the classical Drude theory

(Kent, 1919), and hence by the present theory also.
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VII-(D) Determination of Impurity Contributions

Unlike the d.c. electrical properties_ the optical

dispersion properties are affected very little by the presence

of a small amount of impurities (i.e._ [0 -4 or less in

concentration) except at the far infrared and low temperatures.

It is well known that the impurity contributions give rise to

the finite residual resistance important at very low temperatures.

The pronounced effect of the impurity scattering at very low

temperature is attributed to the fact that the damping co-

F° Tefficients and e_ vanish with _ (or _ T

for transition metals) and _T _ respectively_ when-_ is

decreased to the neighborhood of the absolute zero, while _;

being independent of temperatures maintains its constant value

o
even at 0 K.

In the present theory0 however_ the damping coefficients

and le_ appear multiplied by the respective quantum

correction factors bep(_T) and bee((0) which_ at very low

temperatures and in the near infrared; increase exactly as

fast as the rate at which _ and N ° decrease with decrease

in T. As a result_ the over-all damping coefficient _(_T)

manages to maintain a constant but relatively large value even

o
at 0 K. For this reason, it will be senseless to attempt to

determine the value of from a near infrared optical data

unless the concentration of impurities is sufficiently large as

to make comparable with Ree or Rep" It was shown



-].86-

in uhapter V that, unlike C_ , (l-e) depends on the _-

independent damping -_o such that

<r o)
VII-(20)

at very low temperatures. Unless the wavelength is very

long, however, this is not going to improve the situation

since in most of the infrared and near infrared regions of

spectrum, (20) is replaced by _ \CO/ "

Therefore, it is quite clear that any attempt to determine

_o can be made only when the optical data are available in

the far infrared region, ! << _(0 <_ c_ . Ir this case,

the formula (20) is useful provided that 03 is not much larger

than _o .

At very low temperatures (T S 10°K) and in the far

infrared, the optical quantity which is measured with relative

ease is the absorptivity A or the reflectivity R=(I-A). The

value of _ can then be determined from the formulae that

_re given in Chapter VIII. For many metals, the values of

_ , _ and COD are available from the room temperature

data with an accuracy of 10% or less, so that if A B is measured

_o
up to <_ 10%, the value of iM can be determined up to

T-1 _

i0%. The optical estimation of IM can be useful when a

direct electrical measurement is difficult.

When the value of _._ is available, the impurity
p!



-187-

concentration N can be estimated from the complete expression for
M

_ 1959 ) or qualitatively from( Gurzhi,

_<_ ,_> C<_
= k VII- (21)

which gives us the order-of-magnitude estimation, where ( _M )

is the mean free path of the electron-impurity collisions.

_rthur _13_.ittle,_Jac.
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Chapter VIII

Bulk Absorption at Very Low Temperatures

VIII-(A) Normal Metals at Very Low Temperatures:

T_- was _ ..... ' ^._ • ....... In th= preceding chapters that the

bulk absorptivity A B of a normal metal (i.e., non-super-

o
conducting) retains a finite non-zero value even at O K

in the spectral range given by _ >7 C_ _ _ , and vanishes

o

at O K, for a pure metal in the limit 0)-_ O. It was also

o

shown that the bulk absorptivity at O K, which we shall call

the "zero-point bulk absorptivity", in the near infrared is

independent of 63 aside from the Umklapp term.

Specifically, we obtained the following formulae for

the bulk absorptivity in the high frequency part of the infrared;

and

[
z_ q ( .___ +A_,_ "_o °6O'LI -

: oo>...n..,,(/._>o_)

: >>A5 _ (,0o

VIII- (i)

VIII-(2)

where

<

VIII-(3)
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and (G -- _ ) and (G_ -- % ) can differ from zero only when

the Umklapp processes are present.

It is the purpose of the present work to compute the

absorptivity A B at very low temperatures in the spectral ranges

defined by

VIII-(4)

o
both of which are in the far infrared. At T_O K, the

condition (i) applies for practically all frequency values

of infrared, and the calculated value of A B would then

represent the far infrared zero-point bulk absorptivity.

Hagen-Rubens formula

A =z [, * Co

VIII-(5)

applies in the far infrared when the temperature is not too

low. We recall that the formula (5) was obtained by taking

2

At very low temperatures, however, 60 may not be

_lrthur _l._l!ittlr,_,tr.



-190-

_z

necessarily smaller than Jqzo and J_ in the far infrared,

since J_--_ , being independent of 03, decreases rapidly to

F10
l with decrease in T and _ likewise may have a small
M

value if the quantum correction factor bep(_ ) does not

counteract sufficiently the rapid decrease of pC_> with

decrease in T.

Therefore, it is quite clearly the primary task

of the present work to investigate the 69-dependence of bep

( _j c_ ) in the spectral ranges of (4) and also to specify

the order of magnitude of relative to the values of

02 in these spectral ranges. We shall first investigate the

o

(D-dependence of bep(_,_ ) for _ >7 i and T _ O K. We

shall, for the sake of generality, calculate it for both _ > o<

and _c<

Kn (

Upon using various formulae for Jn ( _ _ ) and

) in the results of Chapters IV0 V, and Vl0 we

obtain the following express ions for bep(_,_ ) for both

transition and nontransition metals;

s

IO

vxlx-(6)
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_< _:

for nontransition metals, and

/

.J/

VIII-(7)

VIII- (S)

VIII-(9)

for transition metals, where, for the sake of convenience, we have

taken o_E to be zero.

_-,us, _-_.= electr_-p_n_.. .._..... damping coefficient of non-

transition metals is given by

5 K(_

10
VIII-(lO)

GO
VIII-(11)

7_rthur _._Little,_ttr.
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For transition metals with (X=___ C) , we have

M > o< vzzz-(12)

_<_ viii-(13)

It must be remembered that, for a ferromagnetic

metal, the equations (12) and (13) must be multiplied by 1/2

on the R.H.S. as the correction for the residual magnetization.

The formulae (8), (9), (12) and (13) will also apply to those

transition metals which have _E 70 provided that o( E

is sufficiently smaller than _. In this case, the formulae

(9) and (13) are multiplied by (_- _ ) so that _ <_)

has non-zero values for _ > K_ E only.

For both types of metals, the electron-electron

damping coefficient is given by

41r•

VIII-(14)
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In order to write down the formulae for the bulk

absorptivity, we need to compare the magnitudes of 402 with

J_0 _ _ : i.e., to find out which of the equations (i)

and (5) is applicable.

o

At T_ i0 K, _ = t

of _ which is of the order of

corresponds to the values

12 -i

l0 sec. We are therefore

interested in the spectral range given by

sd

It was shown in preceding chapters that Rep (and Rep) J Ree

and _ (for a "pure" metal) have typical values of the

order of IO _ d + " IC) I° ,oI IO 8 and < IO respectively.

The Debye temperature is generally of the order of several

o 015. 
hundred _ _o_ ....... = ........ sec.

-1

Therefore, for 60 __ i_Z-sec and _ JOO°K ,

we have

The same is then true for _ since it contains no02-

dependence and

IZ -I
OJ /0 sec.

This implies that the equation (i) is to be used for evaluating

_:thur _._£ittle,3nc.



the absorptivity in the spectral range of 60 _._ I0 tz sec-/.

and T < 10°K.

Thus we have the following formulae for the bulk

absorptivity of the noble metals and the transition metals,

respectively;

Ix/.._"

VIII-(15)

AB_ OOo_.(oo LK®J "t- 4_rZkK®/ +

for nontransition metals, and

2. & ÷ _w

VIII-(16)

VIII-(17)

VIII-(18)
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for transition metals, where X(0)= 1 for ferromagnetic metals

and = 2 for paramagnetic metals.

Although R is generally smaller than R by a
ee ep

large factor, contributions of the electron-electron

collisions to (15)_(18) can be substantially large compared

with the electron-phonon term because of the smaller power of

_'_CK-_) in the electron-electron term. This is even more

true if, in (17) and (18), _m is very large. The first terms

inside _ _ of (17) and (18) must be equated to zero for

_ _ <_E when @E is not zero so that the only _-dependence

appears in the Umklapp term.

Now let us investigate the case of _ _ i and

< Io -,•.%,e-,C.,

This spectral range is of interest when one wishes to compare

the absorption of a normal metal since the superconducting

0
energy gap is generally of the order of several K in temperature

and thus _ £ I0 IL &¢6 I. For 60 _ I0" -IS_c. , we will in

< ,o ogeneral have _-_ _ for _ > I00 K . This implies

that we will have _ as the most dominant term in both

J_o and 31 o when the metal is not completely free of

impurities. Nowever, since we saw previously that _o <_ IO s_c.

for most of the so called "pure" metal samples, we still have

@ <-_ I0

2Irthur _._.ittle,_ttr.



so that the equation (i) is again applicable.

Therefore, we shall henceforth consider (i) as the

general formula for bulk absorptivity which is applicable in

the far infrared at very low temperatures regardless of

whether _ >_ I or _ _

exceptionally large value of

a large C_ , _ Id z -Isac., say , the Hagen-Rubens formula

(5) should be used with _> equated to Pj .

For _ >> _ and _ ! I , we have the following

formulae for Jn(_ _ ) and Kn( _, _ );

0 unless a metal has an

_o . When the sample has

@_-l 3, -

< [ o2_ o(#,_)~2__, /_K2(_)+# 3,
VIII-(19)

where the first terms inside ['"_ are the largest terms.

These formulae are to be used in evaluating bep(_j _ ),

for nontransition metals, and

VIII-(20)
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VIII-(21)

for transition metals. Then, it is a trivial matter to write

down the bulk absorptivity since we only need to replace b
ep

of (16)_ (18) by (20) and (21) in the electron-phonon term.

Finally, it may be reminded that the values of the

Sd

parameters Rep, Ree_ and Rep which are required for a numerical

estimation of (16)_ (18) are to be obtained from the optical

data taken at higher temperatures and alternatively from the

d.c. electrical data. The same applies to the other parameters.

_rthur _._£ittI¢._.c.
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VIII-(B) Bulk Absorption by Superconductors:

Compared with what are available on normal metals, very

little experimental data are available on the optical and infra-

red absorption in superconductors. Some of the latest

measurements are those of Biondi and Garfunkel (1959) and

Richards and Tinkham ( 1960 ). These measurements are designed

to determine the superconducting energy gap from the shape of

the observed absorption curves. Specifically, these experiments

include measuring the absorption of the external electro-

magnetic wave in a superconductor relative to that in a normal

metal, and the results are embodied in the curves showing the

ratio,

A&

CS_ = I -
AN

VIII-(22)

where A and A are the absorptivities, at a given frequency
s n

and temperature, of the superconducting and normal metal,

respectively. The normal state of metal is accomplished by

applying a magnetic field parallel to the surface which is

strong enough to reduce the gap to zero. The results are

equivalently expressed in terms of the power absorbed, P s

and Pn' instead of the absorptivities A s and A n . In the plot

of _N VS. _, for instance, the energy gap is determined

by locating the frequency _g where _ starts to decrease

abruptly: that is, the head of the absorption tail.
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The superconductor differs from the normal state in

that the density-of-states function _E_ does not show the

continuous distribution around the Fermi level in the form,

but possesses discontinuities exhibiting a forbidden region

on both sides of the Fermi level.

In the theory of Bardeen, Cooper, and Schrieffer (1957),

a certain minimum energy is required to produce an excitation

from the ground state. This minimum excitation energy, or the

energy gap, is a central result of the BCS theory. Existence

of the predicted energy gap has been fully verified, and is

by now a popularly accepted fact. According to the theory of

is given by

: Izl> £

=0 ; izl< 6

VIII-(23)

_(O> is the density-of-states function of awhere normal

metal evaluated at the Fermi level, _ is (1/2) of the energy

_rthur _._ittle,_nr.
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gap Eg which is a function of temperature, and

It is seen that _S(E_ increases very sharply at the

gap edges, E=( EFZ _ ). The energy gap Eg(T) achieves its

maximum value E (O) at T = O°K and decreases to zero as T is
g

increased to Tc0 the superconducting transition temperature.

In the region where E < E F - _ , all the electrons occur

paired and this part of the band is called the paired band.

On the other hand, the electrons in the region where E_EE+ 6

are unpaired, and this part of the band is usually referred

to _s the unpaired Dand or the "normal" conduction band which

bears no difference from the conduction band of a normal metal.

most of the electrons
However, at a temperature T below T c,

are paired, and very few are available in the unpaired band.

Therefore, most of the absorption will be due to these paired

electrons. When the paired electrons make transitions to the

unpaired band, the energy absorbed must be at least as much as

that which is required to overcome the gap E : otherwise, no
g

transition of this type is possible, since electrons are for-

bidden in the gap. The BCS density-of-states function _E_

is schematically illustrated in Figure 35. The typical temper-

ature dependence of E is shown in Figure 36. For _ > T C ,
g
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the metal is completely normal, and absorptivity is fully

described by the results obtained in VIII- (A). The curve

showing the dependence of Eg on the magnetic field H bears

a close resemblance to that of Figure 36 when we replace T

by H and Tc by a certain critical field strength H . Thus
c

when H _ H the metal is completely normal even if T <c'

T c, and the optical properties are satisfactorily described

by the results obtained in VIII- (A) and also in the pre-

ceding chapters.

The latest theory of optical dispersion in super-

conductors is due to Mattis and Bordeen (1958), who calculate

the frequency dependence of the complex conductivity C_s

of superconductor on the basis of the BCS theory. Specifically,

they calculate the ratios,

6_N being the high frequency conductivity of normal metal and

_ the photon propagation momentum that is involved, and where

£_; and _ are defined as

VIII-(24)

_trthur _._little,_J.r.
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Based on these results, Richards and Tinkham calculate the

quantity

As _s

from the relations,

viii-(25)

Zs=
ZN VIII-(26)

where Z s and Zn are the surface impedance of superconducting

and normal metals, and R and R are the respective surface
s n

resistance values.

These relations are applicable only in the extreme

anomalous limit where all the contributions to the absorption

and resistance come from the surface effects in which the

electrons absorb photons and collide with the surface of the

metal to conserve energy and momentum. Thus, they do not include

the possible contributions of the bulk where electrons might

absorb photons and emit phonons to conserve energy and momentum.

VIII-(27)
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The bulk contribution of this kind has been found to be

significant in normal metals and was fully discussed

theoretically in VIII- (A) and preceding chapters. That

the bulk effects might also be significant in a superconductor

on account of the large electron-phonon interactions that are

present was suggested by Richards and Tinkham (1960) following

the similar suggestion by Holstein (1952) for a normal metal.

Richards and Tinkham compared the experimental

absorption-edge curves for superconducting lead and tin with

the curve predicted by the theory of Mattis and Bardeen. The

comparison shows that although they agree qualitatively as far

as the shape of the absorption-edge is concerned, the theoretical

values are much greater than the measured values. Further, the

theoretical curve tails off much slower than the observed edge.

This is Shown in Figure 38 where _N is plotted against the

ratio (_/%) for W greater than 6_g= (Eg/_). At the present,

no positive explanations are available on the discrepancy

between the theoretical and experimental absorption edges shown

in Figure 38. Since the theoretical curve of Mattis and Bardeen

is obtained by considering the anomalous skin effects only, it

might perhaps be worthwhile to follow the suggestion of Richards

and Tinkham and compute the bulk contributions to the

absorptivity. If the bulk contribution is significant at all,

it could very well effect in reducing the theoretical values of



Mattis and Bardeen, although it is not certain as to whether

the magnitude of the bulk absorption is of the right order as

to bridge the gap between the theory and experiment.

For _ < 60, Schrieffer (1959) derived the formula
g

oo

VIII-28

from the BCS theory assuming a symmetric electron-phonon inter-

action coefficients.

of 9 <2

This formula applies in the spectral range

<

and differs from zero only for -- >O°K.

Richards and Tinkham (1960) checked this formula in the above

spectral range and found good agreement with the experimental

absorption data. The formula (28) is plotted in Figure 37. It

is shown that _SN rises slowly with increase in 6_)and is smaller

than unity only by a small fraction. Experimental curves of

gN show that the rise of _W with increase in _ is pronounced

in some superconductors such as the transition metals vanadium

and indium while others have a nearly flat ',_@ for _)_ g2g.

At any rate, it is certain that the _ curves do have their

peaks, which are very likely to be discontinuous because of the

discontinuity of _ at the gap edges, at60 = _g and tails off

rapidly as 64) is increased further beyond _g.
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In what follows, we shall do our calculations for the

and at T= O°K. The theoretical
bulk absorptivity only for _2 > CUg

method is essentially the same as in the preceding chapters, and

the difference will be in that we now have to use the new

density-of-states function _(E)that is offered by the BCS

theory.

The density-of-states function _ and the Fermi

function F(E) define the number of electrons per unit volume by

the relation,

It°= I%_ + I%+

-c_ E

VIII-(29)

where n is the number of paired electrons per unit volume

and n+ is the number of unpaired electrons per unit volume.

o

At O K, we have n+ = 0 and the second integral vanishes.

Probability per unit time and per unit energy range that

an electron initially at the state E 1 makes a transition to the

final states in the range E2-_(E2+dE2 ) is given by

a Ez
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and hence

_(E,) j( .... - .__
VIII-(30)

Similarly, the average of P (E 1 ) over all the initial states

is given by

VIII-(31)

where it is implicit that the surface integrals have already

taken care of the necessary requirements of conservation of

energy and momentum.

Upon comparing (30) and (31) with the corresponding

equations for a normal metal in Chapter IV, it is readily

shown that the expression for the power expenditure W of
(r) s

a superconductor will _involve the function F(s ) in the form,

_>(_)_ I i ),J _ e_
--0_

VIII-(32)

where

(+)

We have only F(_% to consider and other three vanish at
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Further, the integrand

_c
e I

l+e l-+e

is different from zero only for those values of _ which

satisfies the Inequallty,

o<x 4-o.. VIII-(33)

The possible values of x are further restricted due to the

presence of the energy gap: namely, the condition expressed

by (23),

I +o-I, >
VIII-(34)

for the product, _SK_2 >Sk_'T_J , not to vaniBh.

Combination of (33) and (34) immediately yields the inequality

condition,

2E 4- o-. VIII-(35)

The integral (32) thus reduces to the form,

-(a+_)'-¢+_ I-_II_-"°-I

_[rthttr _]._Little,_ttc.



-208-

VIII-(36)

For _Q) < K e , we obtain the following expression

for the power expenditure per unit volume per unit time;

e2._2 Nr E"
_o M(K®) _ co_-

y.

VIII-(37)

The absorptivity A is then readily obtained as
s

As _ m* R _i_,__e_ _-o(_-_ ('-_"')
VIII-(38)
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where

where R is exactly the same as R if we take
ep

VIII-(39)

I__+_%+ __ _%_ __ 4% 0
VIII-(40)

: i.e., all conduction electrons are in the paired band at

T_O°K

The formula (39) is good only when the Umklapp processes

and impurity scattering can be ignored in the normal metal.

Otherwise, we must use the more general formula,

& [ ,, . / I_11_+_-_1

vzlz-(41)
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The integrals of (33) and (35) are difficult to evaluate

exactly because of the discontinuity in the density-of=states

functions.

However, a simple, and perhaps oversimplified,

approximation can be obtained upon noting that the first

factor in the integrand represents the density of states of

the initial states and the second factor represents that of

o

the final states, and that, at T= O Ks most transitions cnt_

involve only those initial states which lie at the lower edge

of the gap: i.e.,

1F___.,__ F::_-C , _

This means that most of the contribution to integral (37)

comes from the lower limit of the integral, although the

apparent form of the formula tends to show that the integrand

has singularity at the upper limit as well as at the lower

limit. The singularity at the upper limit has to do with the

fact that most of the electrons reaching the unpaired band

as the result of transitions are likely to crowd at the upper

edge of the gap, where the density-of-states function is

large. We thus have

VIII-(42)

_Irthttr _._ittle,_ttc.
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where it is implicit that the integral in °I" is to include only

--(+)
those values which make P_) >eg • . After some necessary

mathematical steps, we find that YssN of (39) reduces to the

simple formula,

E_E_ (I +z--)

<®

The expressions for A s and _s_

may be obtained in the same manner.

VIII-(43)

of a transition metal

In particular, for those

transition metals which have (XE= 0 , the formula for FsN

which is equivalent to (43) is readily obtained as

VIII- (44)

The formulae (43) and (44), unfortunately, fail to

improve the agreement with the experimental values of Figure 38.

For a more rigorous comparison, however, we have to obtain a

numerical solution to the complete in[egral of (39). This would

certainly improve the situation since the assumption that was

adopted in obtaining the crude solutions (43) and (44), was to

restrict absorptive transitions to only those pairs lying at
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the edge of the gap, while the complete integral takes into

consideration the transitions of any electrons in the paired

_A thus increasing the value of ( L -- _ )
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APPENDIX I

Calculation of Jn(_)

o

xn dx/(e x-l) (l-e-X) : n > 0 I-(1)

I-A: _ << I

o

n-2
x

1

n-l

[ ]7 xe +
dx 1 - i--_- " " "

7 i _n+_+
12 n+l "" •

I-(2)

I-B: _ >> 1

o

eog. i

x n-I dx

e x - 1
= n.'

V <m-n>
/

r_= 1

I--(3)

J@(_) = 124.4

I-C: General calculation

xnjo (_) = e x dx
(e x - I) a

O

n-I -x dxx e -x)= n (i - e

o

I-(4)

_rthur _3Little,_.r.



The integral on the right-hand side can be written

n-i -x o n =I v _ n-l -"-- -- _.. -A

1 _ e_ x dx = 1 _ e_ x 1 _ e-X

o o _

I-(5)

The definite integral can be evaluated by the series,

x e rn.,_,
I - e "x

0 m=l

If(6)

e®go

= 24.8861 ; n = 5

The indefinite integral can also be written as a series,

m n

f 'n-lxl- eeTM'X dx = I (n-r)(n=l)',o _n-r I (mr em_)

C_ r=l m=l

I-(7)

Substitute Equations (5)_ (6) and (7) into Equation (4):

0o _ co

- n '_ o_n-r __ mO_ _-IJ°(_) =[ "_ I <re'n) I (n-r) ; _', (mr e

m=l r=1 111--i

i-(8)
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o
I-D: J5 (5)

From Equation (8) we compute the numerical values of

J°(5). For small values of _:

1 o 5 ...
5_ Js( ) = Bo + BI_e + B2_ 4 + B3_6 + B4_ s + Bs51° + I-(9)

Bo = 0 o25000000

BI = - .01388889

B2 = 0 °00052083

Bm = - .00001653

B4 = 0.00000096

H5 = - o00000003

I-(lO)

This series is good to 8 places for 5 = i, and its

accuracy diminishes thereafter.

For somewhat larger values of 5_ let

1
u = --c_

3

Then

54 J (c%) = DO + D1u 2 + D2u 4 + D3u 6 + 0.o + D9 u18
I-(ll)

_rthur _.:J!ittI_._ur.
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D o = 0.250000

D z = - °125000

D- = 0.042188

D 3 = - .012054

D 4 = 0.003164

D 5 = - .000792

D 6 = 0.000193

D 7 = - .000046

D s = 0.000011

D 9 = - .000003

I-(12)

This series is good for _ < 2_ and diverges for

> 2_0 and should not be used for values of _ much larger

than 3 so that the last terms contribute significantly.
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APPENDIX I I

Calculation of bep(a)

b
ep

In the limit of _ >> KS, the quantum correction factor

(it,_) becomes

1 _ % + (_) II-(1)

With the help of Appendix Is we evaluate _ (6)
ep

numerically for _ < 2_.

For small values of 6,

=
ep 5

Ao + Alex2 + A_ 4 + A_cze + A4_ s

BO + Bla e + B_D_ + B30_ + B4_ s +Bsa I°

II-(2)

where

Ao = 0.20000000

AI = 0.01666667

A2 = - .00027778

A3 = 0.00000661

A4 = - °00000017

II-(3)

and the B-series are the same as in Equation I-(9).

The A series are the quantity0

i)I
e_- I

m=o

II-(4)

: _<_1

_rthur _3_ittle,_.n
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For somewhat larger values of _, let

Then

_ep (a) _ 1
CO + Clu e + Ceu 4 + C3u 6 + o.. + C8u 16

Do + Dlu e + D2u 4 + D3u 6 + ..o + D9 uls

: _<2_

OO

= -_-- + -
e(_-1

_=0

Co = 0. 200000

CI = 0.150000

C2 = - .022500

C3 = 0. 004821

C4 =,, - .001085

= 0.000247

C6 = - .000056

C7 = 0. 000013

C8 = - .000003

and the D-series are the same as in Equation I-(ll).

Similarly, it can be evaluated for _ > 2_ when the

formulate of Appendix I are used.

For _ a 17, for instance, we obtain

(+ 1244.31(_s .)bep (_) = +

II-(5)

II-(6)

II-(7)

II-(8)
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Appendix III

Integrals J (_0_) and K (_,_)
n n

III-A: General expression for Jn(_,_)

J (_,a)
n = / xn d x - e _ = e" : n > 0

0

III-(1)

We will use the relation,

1 e'X 1

eX-I

/
O

m m+l
x dx x I

ex- I m +i eX-I
0

m+l

where

{oX =

e x- 1 x= 0 1

: m>o

: m=o

Then, for n > 0_

J (_,a) =
n

n

i Ie2_® I
m=o

1

m+l e_ - i

+ (-i) n'm+1 (_u)m+l -(-I) m+ _+ (-I) _2u____ III-(2)

e_+_ -x e_- x

+ jom+l(_'_)+ (-I) d+1(_) -(-I) I+ (-I)n J+1°(_)

_Irthur _13littlefi3.n
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III-B: General expression for Kn(_,a)

o !

We split the three factors as follows:

I _ e'B

III-(3)

-x
1 e

<_x.t<e=_-,> <o-_-,>
1 I

eX-i

ex- 1 exeX(eX-l)

eX±it, i
.]

and use the relation,

Then,

m m+1 ix dx = x i + -- jo (CZ)

o ex- I m+l e x- I m+1 m+l
o

Kn(,,a) =

(2

e "_ f [ I e_ (I +e_ )
xne-Xdx , +

(eeg.l) (eg.l) eX_U-i eX'g-I e x - i
o

If 5 -_e "g e

(ea_t.l) (e_t-l) (x-_t) n dx e_t'x + (xqJ/) n dxeX.l eX-I

_t -It

Cz

f xndxe "x ]- (I + eB) i _ - 1 '

0



-221-

From this, we have

Kn(_,O0 = 1 l(nm) n-m{e_(.1)n-m

m=o
(emP-l) (eB-l)

m+1 ] m+1
+ ((X.M)m+Z - (-I)m+i

eB-i eO_'p - i e-_i-I

-(re+l) [(-1)n-m eP _m(_+_,_) + _m(_-g_) ]

+e t'L (.1)n'm [jm°+l(_-I.._)_ Jm°+:l(P-)] + [Jm°+l(O_-I a)

e_- 1

n+l r jn+l(a) - (1 + e _) _n(a,O III-(4)

where

a

n(a,b) / n= x

b

-x
-- - e

-x
e dx

n

I n-rx

r=O

n(n-l) ..o (n-r+l) III-(5)

2[rthur _13!ittle, _3.c.
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Ill-C: J (_,_) and K (_,_) at low temperature.
n n

We shall evaluate these integrals for two cases,

Ill _ >> _ >> 1 (_9 >> Y_o >> KT)

[ii] _>> _ , _ _ 0

For the other limiting case of _ >> _, formula (i) of Appendix

II is applicable.

From Equations III-(2) and III-(), we obtain the

following simplified expressions;

[i] jn(C_,_) _ e-2t_ n+1

n

m+l m

m=o

III-(6)

K (_,_)
n

-e_ - n' + 1

S=I

+ (°)"°(Z 0m+1 (,-+i) '. m
n1:o 8:i

III-(7)

: _ >> _ >> 1

[i_]

+.5

e2.. I j (oo) + _3 n(n-1) 03, n-2

n(n- )(n- )(n- ) jo
s' n-4

III-(S)

(®)_7 n(n-1)...7, (n-s) jn.6(®)+ ...}
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I W n+l n (-l)m+1 n

Kn(_'g)'= (eag-l)(x'e'g) IIeg-1 < _'m=o m+1 <m) [l+('l)n]_

n

+ _ (m+l)' [e-B+ (_l)n-m] I
m+l m S"_'_

m=o S=I

" n_ (I + e'g) <i + I T)

S=l

III-(9)

: a>> g,

o
where Jn (_) is given by formula (3) of Appendix I. Formulae

(6), (7), (8) and (9) are sufficient to enable us to cal-

culate bep(g,_) at very low temperatures even in the very

far infrared°

kqrthur _3little,_3ttc.



Appendix IV

On the Question of Existence of

Cos28 _ 1 at the Sinqularitv _ =0

The theoretical calculations of the transition proba-

bility rested on the assumption that there exists a cosa8

which satisfies the condition,

s(_) = l

and hence

= E(k__+rc[) - E(k__) - rE(cD - s_: 0

; r,s = (+)

and

cose : (K._/k q)

The existence of such a cose was asserted by Wilson

(1936) for the processes which do not involve an external

electromagnetic field.

We shall show that such a cose exists also in the

presence of the electromagnetic field.

From Equation (i), we have

m*cos8 = -sr _ kq (m*u >+ _k - r 2k

zv-(1)

zv-(2)

IV-(3)
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In comparing the order of magnitude of the three terms

on the R.H.S. of Equation (3), we shall use the typical

values,

m* _ i0 "27 (g)

u L __
i0 s (cm/sec)

v F __ l0 s (cm/sec)

qo = _u L -_10s (cm'l) for @ _ 10 2 K

The first term is rewritten as

A = \_kq

and the second term as

IV-(4)

m*uLB = _k = iv-(5)

At ordinary and higher temperatures, the phonons with

q _ qo are active, and hence we have

A_< (e_)10 "a for k > 1

In this case, the third term is the only important

one, and any q equal to 0_ smaller than (2k F) gives us

2
cos e _ 1 satisfying the condition (i). Thus, we have
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cosae _< 1

COS28 < % / qo he .

\ kF/

qo >/ 2kF

qo < 2kF

IV- (6)

In general, the second of the above two applies when

qo > 2kF' the integral over q must be cut off at q=2k F.

The scattering angle 0 is defined as

cos

k = + rq + sp

__ + r

Then, 0 is related to 8 by the relation

IV-(7)

(ke+ q2 + 2r c°sS>%c°s0 = k (i + r --q--c°sS>k IV-(8)

Then, upon writing

qo _ (2_)(_ Vo_ IV-(9)

k
= kF _ (s_) (-_Vo_

we easily see that the second condition of Equation (6)

corresponds to

@< 78.1
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in agreement with the usual value of 79" for elastic scatter-

ing (k'= k), and that the first condition of Equation (6)

corresponds to 0 < 0 < _, thus scatterings are possible for

all angles.

At low temperatures, the phonons with

uLq _ KT iv-(10)

are active, and it is easily seen in Equation (3) that the

first term (e.m.-phonon term) can be the most important

one. For such a case, we have

A %1__ for x >t_
T

and hence,

cos2e < IV-(11)

so that for T > l°K, it is assured that a cosa8 _< 1 exists.

2h:thttr _13£ittIe,3J.c.
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